Skip to main content

metrics

Defines functions which compute metrics.

Module

Submodules

Classes

ClassificationMetric

class ClassificationMetric(    func: Callable[[np.ndarray, np.ndarray], float], probabilities: bool,):

A classification metric used for assessing ML model performance.

Arguments

  • probabilities: Whether y_pred needs to be classes or probabilities.

Attributes

  • func: A function which computes the metric. Must take two arguments: y_true and y_pred and return a metric as a float.

Ancestors

Variables

  • static probabilities : bool

Metric

class Metric(func: Callable[[np.ndarray, np.ndarray], float]):

A metric used for assessing ML model performance.

Attributes

  • func: A function which computes the metric. Must take two arguments: y_true and y_pred and return a metric as a float.

Variables

MetricCollection

class MetricCollection(    metrics: Optional[MutableMapping[str, Metric]] = None,    problem: Optional[MetricsProblem] = None,):

Container class for metrics to calculate.

Arguments

  • metrics: A list of metrics to calculate.
  • problem: The problem type. If metrics are not specified, the problem type will be used to determine the metrics to calculate.

Attributes

  • metrics: A list of metrics to calculate.
  • problem: The problem type.
  • optimal_threshold: The optimal threshold to separate classes (only used for classification problems).
  • thresholds: The thresholds to separate classes (only used for classification problems).
  • threshold_metrics: The metrics for each threshold (only used for classification problems).

Raises

  • ValueError: If neither one of problem nor metrics is specified.

Static methods


create_from_model

def create_from_model(    model: Union[_BaseModel, DistributedModelProtocol],    metrics: Optional[MutableMapping[str, Metric]] = None,)> MetricCollection:

Creates a MetricCollection object from a _BaseModel.

Arguments

  • model: A _BaseModel.
  • metrics: The metrics dictionary. Defaults to None.

Returns Instance of MetricCollection.

Methods


compute

def compute(    self,    test_target: np.ndarray,    test_preds: np.ndarray,    metric_to_optimise: str = 'F1',    threshold: Optional[float] = None,)> dict[str, float]:

Compute list of metrics and save results in self.results.

note

Thresholds do not apply to multiclass problems.

Arguments

  • test_target: A list of targets.
  • test_preds: A list of predictions.
  • metric_to_optimise: What metric to optimize in order to compute the optimal threshold. This will have no effect if there aren't any metrics to which a threshold is applied. Must be present in 'self.metrics'.
  • threshold: If this argument is provided, this threshold will be used instead of optimising the threshold as per 'optimise'

MetricsProblem

class MetricsProblem(    value, names=None, *, module=None, qualname=None, type=None, start=1,):

Simple wrapper for different problem types for MetricCollection.

Ancestors

Variables

  • static BINARY_CLASSIFICATION
  • static MULTICLASS_CLASSIFICATION
  • static MULTILABEL_CLASSIFICATION
  • static REGRESSION
  • static SEGMENTATION