Skip to main content

dataloaders

PyTorch-specific DataLoader implementations.

Classes

PyTorchBitfountDataLoader

class PyTorchBitfountDataLoader(    dataset: _BitfountDataset, batch_size: int = 1, shuffle: bool = False,):

Wraps a PyTorch DataLoader with bitfount functions.

Arguments

  • batch_size: The batch size for the dataloader. Defaults to 1.
  • dataset: An pytorch compatible dataset.
  • shuffle: A boolean value indicating whether the values in the dataset should be shuffled. Defaults to False.

Attributes

  • batch_size: The batch size for the dataloader. Defaults to 1.
  • shuffle: A boolean value indicating whether the values in the dataset should be shuffled. Defaults to False.

Ancestors

  • bitfount.backends.pytorch.data.dataloaders._BasePyTorchBitfountDataLoader
  • BitfountDataLoader

Methods


expect_key_in_iter

def expect_key_in_iter(self)> bool:

Will there be a data key entry in the output from iteration?

get_pytorch_dataloader

def get_pytorch_dataloader(self, **kwargs: Any)> torch.utils.data.dataloader.DataLoader:

Return a PyTorch DataLoader for self.dataset.

Keyword arguments are passed to PyTorch's DataLoader constructor and take precedence over the values set in the constructor.

PyTorchIterableBitfountDataLoader

class PyTorchIterableBitfountDataLoader(    dataset: _IterableBitfountDataset,    secure_rng: bool = False,    batch_size: int = 1,    shuffle: bool = False,):

Wraps a PyTorch DataLoader with bitfount functions.

Arguments

  • batch_size: The batch size for the dataloader. Defaults to 1.
  • dataset: An iterable dataset.
  • secure_rng: A boolean value indicating whether to use a secure random number generator. Defaults to False.
  • shuffle: A boolean value indicating whether the values in the dataset should be shuffled. Defaults to False.

Attributes

  • batch_size: The batch size for the dataloader. Defaults to 1.
  • secure_rng: A boolean value indicating whether to use a secure random number generator. Defaults to False.
  • shuffle: A boolean value indicating whether the values in the dataset should be shuffled. Defaults to False.

Ancestors

  • bitfount.backends.pytorch.data.dataloaders._BasePyTorchBitfountDataLoader
  • BitfountDataLoader

Methods


expect_key_in_iter

def expect_key_in_iter(self)> bool:

Will there be a data key entry in the output from iteration?