datasplitters
Classes for splitting data.
Classes
DatasetSplitter
class DatasetSplitter():
Parent class for different types of dataset splits.
Subclasses
- PercentageSplitter
- SplitterDefinedInData
- bitfount.data.datasplitters._InferenceSplitter
Static methods
create
def create( splitter_name: str, **kwargs: Any,) ‑> DatasetSplitter:
Create a DataSplitter of the requested type.
splitter_name
def splitter_name() ‑> str:
Returns string name for splitter type.
Methods
get_dataset_split_indices
def get_dataset_split_indices( self, data: pd.DataFrame,) ‑> tuple[numpy.ndarray[typing.Any, numpy.dtype[numpy.integer]], numpy.ndarray[typing.Any, numpy.dtype[numpy.integer]], numpy.ndarray[typing.Any, numpy.dtype[numpy.integer]]]:
Returns indices for data sets.
get_filenames
def get_filenames( self, datasource: FileSystemIterableSource, split: DataSplit,) ‑> list[str]:
Returns a list of filenames for a given split.
Only used for file system sources.
Arguments
datasource
: AFileSystemIterableSource
object.split
: The relevant split to return filenames for.
Returns A list of filenames.
iter_dataset_split
def iter_dataset_split( self, datasource: BaseSource, split: DataSplit, **kwargs: Any,) ‑> Iterable[pd.DataFrame]:
Yield data for a given split.
Arguments
datasource
: The datasource to iterate over.split
: The split to yield data for.kwargs
: Additional args to pass to the underlying datasource yield_data().
iter_dataset_split_indices
def iter_dataset_split_indices( self, datasource: BaseSource, split: DataSplit,) ‑> Iterable[int]:
Yield indices/keys for a given split.
iter_filenames
def iter_filenames( self, datasource: FileSystemIterableSource, split: DataSplit,) ‑> Iterable[str]:
Yield filenames for a given split.
Only used for file system sources.
Arguments
datasource
: AFileSystemIterableSource
object.split
: The relevant split to return filenames for.
PercentageSplitter
class PercentageSplitter( validation_percentage: int = 10, test_percentage: int = 10, shuffle: bool = True, time_series_sort_by: Optional[Union[list[str], str]] = None,):
Splits data into sets based on percentages.
The default split is 80% of the data is used training, and 10% for each validation and testing, respectively.
Arguments
validation_percentage
: The percentage of data to be used for validation. Defaults to 10.test_percentage
: The percentage of data to be used for testing. Defaults to 10.time_series_sort_by
: A string/list of strings to be used for sorting time series. The strings should correspond to feature names from the dataset. This sorts the dataframe by the values of those features ensuring the validation and test sets come after the training set data to remove potential bias during training and evaluation. Defaults to None.shuffle
: A bool indicating whether we shuffle the data for the splits. Defaults to True.
Ancestors
Variables
- static
shuffle : bool
- static
test_percentage : int
- static
time_series_sort_by : Union[list[str], str, ForwardRef(None)]
- static
validation_percentage : int
Static methods
create
def create( splitter_name: str, **kwargs: Any,) ‑> DatasetSplitter:
Inherited from:
Create a DataSplitter of the requested type.
splitter_name
def splitter_name() ‑> str:
Inherited from:
DatasetSplitter.splitter_name :
Returns string name for splitter type.
Methods
get_dataset_split_indices
def get_dataset_split_indices( self, data: pd.DataFrame,) ‑> tuple[numpy.ndarray[typing.Any, numpy.dtype[numpy.integer]], numpy.ndarray[typing.Any, numpy.dtype[numpy.integer]], numpy.ndarray[typing.Any, numpy.dtype[numpy.integer]]]:
Inherited from:
DatasetSplitter.get_dataset_split_indices :
Returns indices for data sets.
get_filenames
def get_filenames( self, datasource: FileSystemIterableSource, split: DataSplit,) ‑> list[str]:
Inherited from:
DatasetSplitter.get_filenames :
Returns a list of filenames for a given split.
Only used for file system sources.
Arguments
datasource
: AFileSystemIterableSource
object.split
: The relevant split to return filenames for.
Returns A list of filenames.
iter_dataset_split
def iter_dataset_split( self, datasource: BaseSource, split: DataSplit, **kwargs: Any,) ‑> Iterable[pd.DataFrame]:
Inherited from:
DatasetSplitter.iter_dataset_split :
Yield data for a given split.
Arguments
datasource
: The datasource to iterate over.split
: The split to yield data for.kwargs
: Additional args to pass to the underlying datasource yield_data().
iter_dataset_split_indices
def iter_dataset_split_indices( self, datasource: BaseSource, split: DataSplit,) ‑> Iterable[int]:
Inherited from:
DatasetSplitter.iter_dataset_split_indices :
Yield indices/keys for a given split.
iter_filenames
def iter_filenames( self, datasource: FileSystemIterableSource, split: DataSplit,) ‑> Iterable[str]:
Inherited from:
DatasetSplitter.iter_filenames :
Yield filenames for a given split.
Only used for file system sources.
Arguments
datasource
: AFileSystemIterableSource
object.split
: The relevant split to return filenames for.
SplitterDefinedInData
class SplitterDefinedInData( column_name: str = 'BITFOUNT_SPLIT_CATEGORY', training_set_label: str = 'TRAIN', validation_set_label: str = 'VALIDATION', test_set_label: str = 'TEST', infer_data_split_labels: bool = False,):
Splits data into sets based on value in each row.
The splitting is done based on the values in a user specified column.
Arguments
column_name
: The column name for which contains the labels for splitting. Defaults to "BITFOUNT_SPLIT_CATEGORY".training_set_label
: The label for the data points to be included in the training set. Defaults to "TRAIN".validation_set_label
: The label for the data points to be included in the validation set. Defaults to "VALIDATION".test_set_label
: The label for the data points to be included in the test set. Defaults to "TEST".
Ancestors
Variables
- static
column_name : str
- static
infer_data_split_labels : bool
- static
test_set_label : str
- static
training_set_label : str
- static
validation_set_label : str
Static methods
create
def create( splitter_name: str, **kwargs: Any,) ‑> DatasetSplitter:
Inherited from:
Create a DataSplitter of the requested type.
splitter_name
def splitter_name() ‑> str:
Inherited from:
DatasetSplitter.splitter_name :
Returns string name for splitter type.
Methods
get_dataset_split_indices
def get_dataset_split_indices( self, data: pd.DataFrame,) ‑> tuple[numpy.ndarray[typing.Any, numpy.dtype[numpy.integer]], numpy.ndarray[typing.Any, numpy.dtype[numpy.integer]], numpy.ndarray[typing.Any, numpy.dtype[numpy.integer]]]:
Inherited from:
DatasetSplitter.get_dataset_split_indices :
Returns indices for data sets.