ga_screening_protocol_bronze
GA custom multi-algorithm protocol.
First runs a model inference on the Fovea model, then GA model, then the GA algorithm to compute the area affected by GA. Then CSV and PDF Reports get generated.
Classes
GAScreeningProtocolBronze
class GAScreeningProtocolBronze( *, algorithm: Sequence[Union[ModelInference, ModelInference, GATrialCalculationAlgorithmBronze, TrialInclusionCriteriaMatchAlgorithmBronze, CSVReportGeneratorOphthalmologyAlgorithm, GATrialPDFGeneratorAlgorithmAmethyst]], results_notification_email: Optional[bool] = False, trial_name: Optional[str] = None, rename_columns: Optional[Mapping[str, str]] = None, **kwargs: Any,):
Protocol for running GA Algorithms and fovea sequentially.
Ancestors
- BaseProtocolFactory
- abc.ABC
- bitfount.federated.roles._RolesMixIn
- bitfount.types._BaseSerializableObjectMixIn
Variables
- static
fields_dict : ClassVar[dict[str, marshmallow.fields.Field]]
algorithms : list[BaseCompatibleAlgoFactory]
- Returns the algorithms in the protocol.
Methods
dump
def dump(self) ‑> SerializedProtocol:
Inherited from:
Returns the JSON-serializable representation of the protocol.
modeller
def modeller( self, mailbox: _ModellerMailbox, **kwargs: Any,) ‑> bitfount.federated.protocols.ophthalmology.ga_screening_protocol_bronze._ModellerSide:
Returns the Modeller side of the protocol.
run
def run( self, pod_identifiers: Collection[str], session: Optional[BitfountSession] = None, username: Optional[str] = None, hub: Optional[BitfountHub] = None, ms_config: Optional[MessageServiceConfig] = None, message_service: Optional[_MessageService] = None, pod_public_key_paths: Optional[Mapping[str, Path]] = None, identity_verification_method: IdentityVerificationMethod = IdentityVerificationMethod.OIDC_DEVICE_CODE, private_key_or_file: Optional[Union[RSAPrivateKey, Path]] = None, idp_url: Optional[str] = None, require_all_pods: bool = False, run_on_new_data_only: bool = False, model_out: Optional[Union[Path, str]] = None, project_id: Optional[str] = None, batched_execution: Optional[bool] = None,) ‑> Optional[Any]:
Inherited from:
Sets up a local Modeller instance and runs the protocol.
Arguments
pod_identifiers
: The BitfountHub pod identifiers to run against.session
: Optional. Session to use for authenticated requests. Created if needed.username
: Username to run as. Defaults to logged in user.hub
: BitfountHub instance. Default: hub.bitfount.com.ms_config
: Message service config. Default: messaging.bitfount.com.message_service
: Message service instance, created from ms_config if not provided. Defaults to "messaging.bitfount.com".pod_public_key_paths
: Public keys of pods to be checked against.identity_verification_method
: The identity verification method to use.private_key_or_file
: Private key (to be removed).idp_url
: The IDP URL.require_all_pods
: If true raise PodResponseError if at least one pod identifier specified rejects or fails to respond to a task request.run_on_new_data_only
: Whether to run the task on new datapoints only. Defaults to False.model_out
: The path to save the model to.project_id
: The project ID to run the task under.batched_execution
: Whether to run the task in batched mode. Defaults to False.
Returns Results of the protocol.
Raises
PodResponseError
: If require_all_pods is true and at least one pod identifier specified rejects or fails to respond to a task request.ValueError
: If attempting to train on multiple pods, and theDataStructure
table name is given as a string.
worker
def worker(self, mailbox: _WorkerMailbox, hub: BitfountHub, **kwargs: Any) ‑> _WorkerSide:
Returns worker side of the protocol.