ophth_ds_types
Types for ophthalmology data sources.
Classes
DICOMImage
class DICOMImage( AcquisitionDeviceTypeCodeSequence: ForwardRef('Sequence[_AcquisitionDeviceTypeCodeSequenceElement]'), PatientName: ForwardRef('str'), PatientBirthDate: ForwardRef('str'), AcquisitionDateTime: ForwardRef('str'), ImageLaterality: ForwardRef('str'), NumberOfFrames: ForwardRef('int'),):
Named tuple for a DICOM image.
Ancestors
- builtins.tuple
Variables
AcquisitionDateTime : str
- Alias for field number 3
AcquisitionDeviceTypeCodeSequence : collections.abc.Sequence[bitfount.data.datasources.ophthalmology.ophth_ds_types._AcquisitionDeviceTypeCodeSequenceElement]
- Alias for field number 0
ImageLaterality : str
- Alias for field number 4
NumberOfFrames : int
- Alias for field number 5
PatientBirthDate : str
- Alias for field number 2
PatientName : str
- Alias for field number 1
FunctionalGroupsSequenceField
class FunctionalGroupsSequenceField( name: ForwardRef("Literal['Shared Functional Groups Sequence', 'Per-Frame Functional Groups Sequence']"), value: ForwardRef('list[_FunctionalGroupsSequenceFieldElement]'),):
Named tuple for Functional Groups Sequence Fields.
Applies to Shared Functional Groups Sequence (5200, 9229) and Per-Frame Functional Groups Sequence (0028, 9230).
Arguments
name
: The name of the sequence field.elements
: The elements of the sequence field.
Ancestors
- builtins.tuple
Variables
name : Literal['Shared Functional Groups Sequence', 'Per-Frame Functional Groups Sequence']
- Alias for field number 0
value : list[bitfount.data.datasources.ophthalmology.ophth_ds_types._FunctionalGroupsSequenceFieldElement]
- Alias for field number 1
FunctionalGroupsSequenceProcessingOutput
class FunctionalGroupsSequenceProcessingOutput(*args, **kwargs):
dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object's (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2)
Ancestors
- builtins.dict
Variables
- static
Pixel Spacing Column : float
- static
Pixel Spacing Row : float
- static
Slice Thickness : float
Metadata
class Metadata(*args, **kwargs):
The initial JSON output of from parsing a single ophthalmology file.
Ancestors
- builtins.dict
Variables
- static
exam : bitfount.data.datasources.ophthalmology.ophth_ds_types._ExamInfo
- static
images : bitfount.data.datasources.ophthalmology.ophth_ds_types._ImagesInfo
- static
patient : bitfount.data.datasources.ophthalmology.ophth_ds_types._PatientInfo
- static
series : bitfount.data.datasources.ophthalmology.ophth_ds_types._SeriesInfo
ProcessedDICOMImage
class ProcessedDICOMImage( file_name: ForwardRef('str'), modality: ForwardRef('OphthalmologyModalityType'), patient_key: ForwardRef('str'), acquisition_datetime: ForwardRef('Optional[datetime]'),):
Named tuple for a processed DICOM image.
Ancestors
- builtins.tuple
Variables
acquisition_datetime : Optional[datetime.datetime]
- Alias for field number 3
file_name : str
- Alias for field number 0
modality : Literal['OCT', 'SLO', None]
- Alias for field number 1
patient_key : str
- Alias for field number 2
ProcessedDataRequiredTypes
class ProcessedDataRequiredTypes(*args, **kwargs):
The final output of the processing from a single ophthalmology file.
Ancestors
- builtins.dict
Variables
- static
Acquisition DateTime : Union[str, pandas._libs.tslibs.timestamps.Timestamp]
- static
Columns : int
- static
Manufacturer : str
- static
Manufacturer's Model Name : str
- static
Number of Frames : int
- static
Patient's Birth Date : Union[str, pandas._libs.tslibs.timestamps.Timestamp]
- static
Patient's Name : str
- static
Patient's Sex : str
- static
Pixel Spacing Column : float
- static
Pixel Spacing Row : float
- static
Rows : int
- static
Scan Laterality : str
- static
Slice Thickness : float
- static
Study Date : Union[str, pandas._libs.tslibs.timestamps.Timestamp]
- static
date_of_birth : str
- static
dimensions_mm_depth : float
- static
dimensions_mm_height : float
- static
dimensions_mm_width : float
- static
first_name : str
- static
fixation : str
- static
gender : str
- static
group_id : int
- static
images : typing_extensions.NotRequired[list[str]]
- static
last_name : str
- static
laterality : str
- static
num_bscans : int
- static
num_modalities : int
- static
patient_key : str
- static
photo_locations_end_x : list[float]
- static
photo_locations_end_y : list[float]
- static
photo_locations_start_x : list[float]
- static
photo_locations_start_y : list[float]
- static
protocol : str
- static
resolutions_mm_depth : float
- static
resolutions_mm_height : float
- static
resolutions_mm_width : float
- static
scan_datetime : str
- static
scanner_model : str
- static
size_height : int
- static
size_width : int
- static
slo_dimensions_mm_height : float
- static
slo_dimensions_mm_width : float
- static
slo_images : typing_extensions.NotRequired[list[str]]
- static
slo_size_height : int
- static
slo_size_width : int
- static
source_info : str
ProcessedDataRequiredTypesDICOM
class ProcessedDataRequiredTypesDICOM(*args, **kwargs):
dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object's (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2)
Ancestors
- builtins.dict
Variables
- static
Acquisition DateTime : Union[str, pandas._libs.tslibs.timestamps.Timestamp]
- static
Columns : int
- static
Manufacturer : str
- static
Manufacturer's Model Name : str
- static
Number of Frames : int
- static
Patient's Birth Date : Union[str, pandas._libs.tslibs.timestamps.Timestamp]
- static
Patient's Name : str
- static
Patient's Sex : str
- static
Pixel Spacing Column : float
- static
Pixel Spacing Row : float
- static
Rows : int
- static
Scan Laterality : str
- static
Slice Thickness : float
- static
Study Date : Union[str, pandas._libs.tslibs.timestamps.Timestamp]