ophth_algo_utils
Utilities for ophthalmology plugins.
Module
Functions
center_text_on_strip
def center_text_on_strip( img: Image.Image, font: ImageFont.FreeTypeFont, text_width: int, text_height: int, text: str, strip_width: int, strip_height: int, color: tuple[int, int, int] = (0, 0, 0),) ‑> PIL.Image.Image:
Center text on image.
Arguments
img
: The image to draw the text on.font
: The font to use for the text.text_width
: The width of the text.text_height
: The height of the text.text
: The text to draw on the image.strip_width
: The width of the strip.strip_height
: The height of the strip.color
: The color of the text. Defaults to black.
draw_no_markers_detected_on_image_strip
def draw_no_markers_detected_on_image_strip( img: Image.Image, height: int, width: int,) ‑> PIL.Image.Image:
Draw the "No markers detected" strip on the image.
Arguments
img
: The image to draw the strip on.height
: The height of the image.width
: The width of the image.
draw_segmentation_mask_on_orig_image
def draw_segmentation_mask_on_orig_image( mask: np.ndarray, image: PIL.Image.Image,) ‑> tuple[PIL.Image.Image, dict[str, tuple[int, int, int]]]:
Draw segmentation mask on original image.
get_data_for_files
def get_data_for_files( datasource: FileSystemIterableSource, filenames: list[str], file_key_col: str = '_original_filename', use_cache: bool = True,) ‑> pandas.core.frame.DataFrame:
Retrieve data from a datasource for a given list of files.
The dataframe returned will be sorted to match the ordering of the files in
filenames
.
get_dataframe_iterator_from_datasource
def get_dataframe_iterator_from_datasource( datasource: BaseSource, data_splitter: Optional[DatasetSplitter] = None, use_cache: bool = True,) ‑> collections.abc.Iterable[pandas.core.frame.DataFrame]:
Get dataframe iterator from datasource.
Arguments
datasource
: The datasource to get the dataframe iterator from.data_splitter
: The data splitter to use when getting the dataframes.use_cache
: Whether to use the cache when getting the dataframes.
Returns An iterable of dataframes from the datasource.
get_imgs_with_segmentation_from_enface_slo
def get_imgs_with_segmentation_from_enface_slo( data: pd.DataFrame, enface_output: np.ndarray, slos: np.ndarray, slo_photo_location_prefixes: Optional[SLOSegmentationLocationPrefix] = None, slo_image_metadata_columns: Optional[SLOImageMetadataColumns] = None, oct_image_metadata_columns: Optional[OCTImageMetadataColumns] = None, colour: Union[str, tuple[int, int, int]] = (0, 255, 255), alpha: float = 0.75, threshold: float = 0.7,) ‑> list[PIL.Image.Image]:
Get images with segmentation on SLO image from enfaces.
is_file_iterable_source
def is_file_iterable_source(datasource: BaseSource) ‑> bool:
True iff datasource is a file iterable source (or subclass).
overlay_with_alpha_layer_ga_trial
def overlay_with_alpha_layer_ga_trial( img: Image.Image, overlay: np.ndarray, colour: Union[str, tuple[int, int, int]] = (255, 0, 0), alpha: float = 0.8,) ‑> PIL.Image.Image:
Overlay an image with a segmentation.
overlay_with_grey_mask_ga_trial
def overlay_with_grey_mask_ga_trial( img: Image.Image, alpha: float = 0.3,) ‑> PIL.Image.Image:
Overlay an image with a segmentation.
parse_mask_json
def parse_mask_json(json_data: dict[Any, Any], labels: dict[str, int]) ‑> numpy.ndarray:
Parse segmentation mask from json.
use_default_rename_columns
def use_default_rename_columns( datasource: BaseSource, rename_columns: Optional[typing.Mapping[str, str]] = None,) ‑> Optional[Mapping[str, str]]:
Sets the default columns to include based on the datasource.