modeller_runner
Utility functions for running modellers from configs.
Module
Functions
run_modeller
def run_modeller( modeller: _Modeller, pod_identifiers: Iterable[str], require_all_pods: bool = False, model_out: Optional[Path] = PosixPath('output-model.pt'), project_id: Optional[str] = None, run_on_new_data_only: bool = False, batched_execution: Optional[bool] = None,) ‑> Optional[Any]:
Runs the modeller.
Run the modeller, submitting tasks to the pods and waiting for the results.
Arguments
modeller
: The Modeller instance being used to manage the task.pod_identifiers
: The group of pod identifiers to run the task against.require_all_pods
: Require all pod identifiers specified to accept the task request to complete task execution.model_out
: The path to save the model out to. Defaults to "./output-model.pt".project_id
: Project Id the task belongs to. Defaults to None.run_on_new_data_only
: Whether to run the task on new datapoints only. Defaults to False.batched_execution
: Whether to run the task in batched mode. Defaults to False.
Raises
PodResponseError
: If require_all_pods is true and at least one pod identifier specified rejects or fails to respond to a task request.
run_modeller_async
async def run_modeller_async( modeller: _Modeller, pod_identifiers: Iterable[str], require_all_pods: bool = False, model_out: Optional[Path] = PosixPath('output-model.pt'), project_id: Optional[str] = None, run_on_new_data_only: bool = False, batched_execution: Optional[bool] = None,) ‑> Optional[Any]:
Runs the modeller.
Run the modeller, submitting tasks to the pods and waiting for the results.
Arguments
modeller
: The Modeller instance being used to manage the task.pod_identifiers
: The group of pod identifiers to run the task against.require_all_pods
: Require all pod identifiers specified to accept the task request to complete task execution.model_out
: The path to save the model out to. Defaults to "./output-model.pt".project_id
: Project Id the task belongs to.run_on_new_data_only
: Whether to run the task on new datapoints only. Defaults to False.batched_execution
: Whether to run the task in batched mode. Defaults to False.
Raises
PodResponseError
: If require_all_pods is true and at least one pod identifier specified rejects or fails to respond to a task request.
setup_modeller
def setup_modeller( pod_identifiers: list[str], task_details: TaskConfig, bitfount_hub: BitfountHub, ms_config: MessageServiceConfig, identity_verification_method: Union[str, IdentityVerificationMethod] = IdentityVerificationMethod.OIDC_DEVICE_CODE, private_key_file: Optional[Path] = None, idp_url: Optional[str] = None, project_id: Optional[str] = None,) ‑> _Modeller:
Creates a modeller.
Arguments
pod_identifiers
: The pod identifiers of the pods to be used in the task.task_details
: The task details as a TaskConfig instance.bitfount_hub
: The BitfountHub instance.ms_config
: The message service settings as a MessageServiceConfig instance.identity_verification_method
: The identity verification method to use.private_key_file
: The path to the private key used by this modeller.idp_url
: URL of the modeller's identity provider.project_id
: The project ID the task belongs to.
Returns The created Modeller.
setup_modeller_from_config
def setup_modeller_from_config( modeller_config: ModellerConfig,) ‑> tuple[bitfount.federated.modeller._Modeller, list[str], typing.Optional[str], bool, bool]:
Creates a modeller from a loaded config mapping.
Arguments
modeller_config
: The modeller configuration.
Returns A tuple of the created Modeller and the list of pod identifiers to run the task against.
setup_modeller_from_config_file
def setup_modeller_from_config_file( path_to_config_yaml: Union[str, PathLike],) ‑> tuple[bitfount.federated.modeller._Modeller, list[str], typing.Optional[str], bool, bool]:
Creates a modeller from a YAML config file.
Arguments
path_to_config_yaml
: the path to the config file
Returns A tuple of the created Modeller and the list of pod identifiers to run