config_schemas
Dataclasses to hold the configuration details for the runners.
Classes
APIKeys
class APIKeys(access_key_id: str, access_key: str):
API keys for BitfountSession.
AccessManagerConfig
class AccessManagerConfig(url: str = 'https://am.hub.bitfount.com'):
Configuration for the access manager.
Variables
- static
url : str
AggregatorConfig
class AggregatorConfig( secure: bool, weights: Optional[dict[str, Union[int, float]]] = None,):
Configuration for the Aggregator.
AlgorithmConfig
class AlgorithmConfig(name: str, arguments: Optional[Any] = None):
Configuration for the Algorithm.
Subclasses
- CSVReportAlgorithmConfig
- CSVReportGeneratorOphthalmologyAlgorithmConfig
- ETDRSAlgorithmConfig
- FoveaCoordinatesAlgorithmConfig
- GATrialCalculationAlgorithmBronzeConfig
- GATrialCalculationAlgorithmJadeConfig
- GATrialPDFGeneratorAlgorithmAmethystConfig
- GATrialPDFGeneratorAlgorithmJadeConfig
- GenericAlgorithmConfig
- HuggingFaceImageClassificationInferenceAlgorithmConfig
- HuggingFaceImageSegmentationInferenceAlgorithmConfig
- HuggingFacePerplexityEvaluationAlgorithmConfig
- HuggingFaceTextClassificationInferenceAlgorithmConfig
- HuggingFaceTextGenerationInferenceAlgorithmConfig
- ModelAlgorithmConfig
- PrivateSqlQueryAlgorithmConfig
- SqlQueryAlgorithmConfig
- TIMMFineTuningAlgorithmConfig
- TIMMInferenceAlgorithmConfig
- TrialInclusionCriteriaMatchAlgorithmAmethystConfig
- TrialInclusionCriteriaMatchAlgorithmBronzeConfig
- TrialInclusionCriteriaMatchAlgorithmJadeConfig
- bitfount.runners.config_schemas._SimpleCSVAlgorithmAlgorithmConfig
BitfountModelReferenceConfig
class BitfountModelReferenceConfig( model_ref: Union[Path, str], model_version: Optional[int] = None, username: Optional[str] = None, weights: Optional[str] = None,):
Configuration for BitfountModelReference.
Variables
- static
model_ref : Union[pathlib.Path, str]
- static
model_version : Optional[int]
- static
username : Optional[str]
- static
weights : Optional[str]
CSVReportAlgorithmArgumentsConfig
class CSVReportAlgorithmArgumentsConfig( save_path: Optional[Path] = None, original_cols: Optional[list[str]] = None, filter: Optional[list[ColumnFilter]] = None,):
Configuration for CSVReportAlgorithm arguments.
Variables
- static
filter : Optional[list[ColumnFilter]]
- static
original_cols : Optional[list[str]]
- static
save_path : Optional[pathlib.Path]
CSVReportAlgorithmConfig
class CSVReportAlgorithmConfig( name: str, arguments: Optional[CSVReportAlgorithmArgumentsConfig] = CSVReportAlgorithmArgumentsConfig(save_path=None, original_cols=None, filter=None),):
Configuration for CSVReportAlgorithm.
Ancestors
CSVReportGeneratorOphthalmologyAlgorithmArgumentsConfig
class CSVReportGeneratorOphthalmologyAlgorithmArgumentsConfig( save_path: Optional[Path] = None, trial_name: Optional[str] = None, original_cols: Optional[list[str]] = None, rename_columns: Optional[dict[str, str]] = None, filter: Optional[list[ColumnFilter]] = None, match_patient_visit: Optional[MatchPatientVisit] = None, matched_csv_path: Optional[Path] = None, produce_matched_only: bool = True, csv_extensions: Optional[list[str]] = None, produce_trial_notes_csv: bool = False, sorting_columns: Optional[dict[str, str]] = None,):
Configuration for CSVReportGeneratorOphthalmologyAlgorithm arguments.
Variables
- static
csv_extensions : Optional[list[str]]
- static
filter : Optional[list[ColumnFilter]]
- static
match_patient_visit : Optional[MatchPatientVisit]
- static
matched_csv_path : Optional[pathlib.Path]
- static
original_cols : Optional[list[str]]
- static
produce_matched_only : bool
- static
produce_trial_notes_csv : bool
- static
rename_columns : Optional[dict[str, str]]
- static
save_path : Optional[pathlib.Path]
- static
sorting_columns : Optional[dict[str, str]]
- static
trial_name : Optional[str]
CSVReportGeneratorOphthalmologyAlgorithmConfig
class CSVReportGeneratorOphthalmologyAlgorithmConfig( name: str, arguments: Optional[CSVReportGeneratorOphthalmologyAlgorithmArgumentsConfig] = CSVReportGeneratorOphthalmologyAlgorithmArgumentsConfig(save_path=None, trial_name=None, original_cols=None, rename_columns=None, filter=None, match_patient_visit=None, matched_csv_path=None, produce_matched_only=True, csv_extensions=None, produce_trial_notes_csv=False, sorting_columns=None),):
Configuration for CSVReportGeneratorOphthalmologyAlgorithm.
Ancestors
Variables
- static
arguments : Optional[CSVReportGeneratorOphthalmologyAlgorithmArgumentsConfig]
- static
name : str
DataSplitConfig
class DataSplitConfig(data_splitter: str = 'percentage', args: _JSONDict = {}):
Configuration for the data splitter.
DataStructureAssignConfig
class DataStructureAssignConfig( target: Optional[Union[str, list[str]]] = None, image_cols: Optional[list[str]] = None, image_prefix: Optional[str] = None,):
Configuration for the datastructure assign argument.
Variables
- static
image_cols : Optional[list[str]]
- static
image_prefix : Optional[str]
- static
target : Union[str, list[str], ForwardRef(None)]
DataStructureConfig
class DataStructureConfig( table_config: Optional[DataStructureTableConfig] = None, assign: DataStructureAssignConfig = DataStructureAssignConfig(target=None, image_cols=None, image_prefix=None), select: DataStructureSelectConfig = DataStructureSelectConfig(include=None, include_prefix=None, exclude=None), transform: DataStructureTransformConfig = DataStructureTransformConfig(dataset=None, batch=None, image=None, auto_convert_grayscale_images=True), data_split: Optional[DataSplitConfig] = None, schema_requirements: SCHEMA_REQUIREMENTS_TYPES = 'partial', compatible_datasources: list[str] = ['CSVSource', 'DICOMSource', 'DICOMOphthalmologySource', 'HeidelbergSource'],):
Configuration for the modeller schema and dataset options.
Variables
- static
assign : DataStructureAssignConfig
- static
compatible_datasources : list[str]
- static
data_split : Optional[DataSplitConfig]
- static
schema_requirements : Union[Literal['empty', 'partial', 'full'], Dict[Literal['empty', 'partial', 'full'], Any]]
- static
select : DataStructureSelectConfig
- static
table_config : Optional[DataStructureTableConfig]
- static
transform : DataStructureTransformConfig
DataStructureSelectConfig
class DataStructureSelectConfig( include: Optional[list[str]] = None, include_prefix: Optional[str] = None, exclude: Optional[list[str]] = None,):
Configuration for the datastructure select argument.
Variables
- static
exclude : Optional[list[str]]
- static
include : Optional[list[str]]
- static
include_prefix : Optional[str]
DataStructureTableConfig
class DataStructureTableConfig( table: Union[str, dict[str, str]], schema_types_override: Optional[Union[SchemaOverrideMapping, Mapping[str, SchemaOverrideMapping]]] = None,):
Configuration for the datastructure table arguments. Deprecated.
Variables
- static
schema_types_override : Union[collections.abc.Mapping[Literal['categorical', 'continuous', 'image', 'text'], list[Union[str, collections.abc.Mapping[str, collections.abc.Mapping[str, int]]]]], collections.abc.Mapping[str, collections.abc.Mapping[Literal['categorical', 'continuous', 'image', 'text'], list[Union[str, collections.abc.Mapping[str, collections.abc.Mapping[str, int]]]]]], ForwardRef(None)]
- static
table : Union[str, dict[str, str]]
DataStructureTransformConfig
class DataStructureTransformConfig( dataset: Optional[list[dict[str, _JSONDict]]] = None, batch: Optional[list[dict[str, _JSONDict]]] = None, image: Optional[list[dict[str, _JSONDict]]] = None, auto_convert_grayscale_images: bool = True,):
Configuration for the datastructure transform argument.
Variables
- static
auto_convert_grayscale_images : bool
- static
batch : Optional[list[dict[str, dict[str, typing.Any]]]]
- static
dataset : Optional[list[dict[str, dict[str, typing.Any]]]]
- static
image : Optional[list[dict[str, dict[str, typing.Any]]]]
DatasourceConfig
class DatasourceConfig( datasource: str, name: str, data_config: PodDataConfig = PodDataConfig(force_stypes=None, column_descriptions=None, table_descriptions=None, description=None, ignore_cols=None, modifiers=None, datasource_args={}, data_split=None, auto_tidy=False, file_system_filters=None), datasource_details_config: Optional[PodDetailsConfig] = None, schema: Optional[Path] = None,):
Datasource configuration for a multi-datasource Pod.
Variables
- static
data_config : PodDataConfig
- static
datasource : str
- static
datasource_details_config : Optional[PodDetailsConfig]
- static
name : str
- static
schema : Optional[pathlib.Path]
ETDRSAlgorithmArgumentsConfig
class ETDRSAlgorithmArgumentsConfig( laterality: str, slo_photo_location_prefixes: Optional[SLOSegmentationLocationPrefix] = None, slo_image_metadata_columns: Optional[SLOImageMetadataColumns] = None, oct_image_metadata_columns: Optional[OCTImageMetadataColumns] = None, threshold: float = 0.7, calculate_on_oct: bool = False, slo_mm_width: float = 8.8, slo_mm_height: float = 8.8,):
Configuration for ETDRSAlgorithm arguments.
Variables
- static
calculate_on_oct : bool
- static
laterality : str
- static
oct_image_metadata_columns : Optional[OCTImageMetadataColumns]
- static
slo_image_metadata_columns : Optional[SLOImageMetadataColumns]
- static
slo_mm_height : float
- static
slo_mm_width : float
- static
slo_photo_location_prefixes : Optional[SLOSegmentationLocationPrefix]
- static
threshold : float
ETDRSAlgorithmConfig
class ETDRSAlgorithmConfig(name: str, arguments: Optional[ETDRSAlgorithmArgumentsConfig]):
Configuration for ETDRSAlgorithm.
Ancestors
FederatedAveragingProtocolArgumentsConfig
class FederatedAveragingProtocolArgumentsConfig( aggregator: Optional[AggregatorConfig] = None, steps_between_parameter_updates: Optional[int] = None, epochs_between_parameter_updates: Optional[int] = None, auto_eval: bool = True, secure_aggregation: bool = False,):
Configuration for the FedreatedAveraging Protocol arguments.
Variables
- static
aggregator : Optional[AggregatorConfig]
- static
auto_eval : bool
- static
epochs_between_parameter_updates : Optional[int]
- static
secure_aggregation : bool
- static
steps_between_parameter_updates : Optional[int]
FederatedAveragingProtocolConfig
class FederatedAveragingProtocolConfig( name: str, arguments: Optional[FederatedAveragingProtocolArgumentsConfig] = FederatedAveragingProtocolArgumentsConfig(aggregator=None, steps_between_parameter_updates=None, epochs_between_parameter_updates=None, auto_eval=True, secure_aggregation=False),):
Configuration for the FederatedAveraging Protocol.
Ancestors
FederatedModelTrainingAlgorithmConfig
class FederatedModelTrainingAlgorithmConfig( name: str, arguments: Optional[FederatedModelTrainingArgumentsConfig] = FederatedModelTrainingArgumentsConfig(modeller_checkpointing=True, checkpoint_filename=None), model: Optional[ModelConfig] = None, pretrained_file: Optional[Path] = None,):
Configuration for the FederatedModelTraining algorithm.
Ancestors
FederatedModelTrainingArgumentsConfig
class FederatedModelTrainingArgumentsConfig( modeller_checkpointing: bool = True, checkpoint_filename: Optional[str] = None,):
Configuration for the FederatedModelTraining algorithm arguments.
FileSystemFilterConfig
class FileSystemFilterConfig( file_extension: Optional[SingleOrMulti[str]] = None, strict_file_extension: bool = False, file_creation_min_date: Optional[Union[Date, DateTD]] = None, file_modification_min_date: Optional[Union[Date, DateTD]] = None, file_creation_max_date: Optional[Union[Date, DateTD]] = None, file_modification_max_date: Optional[Union[Date, DateTD]] = None, min_file_size: Optional[float] = None, max_file_size: Optional[float] = None,):
Filter files based on various criteria.
Arguments
file_extension
: File extension(s) of the data files. If None, all files will be searched. Can either be a single file extension or a list of file extensions. Case-insensitive. Defaults to None.strict_file_extension
: Whether File loading should be strictly done on files with the explicit file extension provided. If set to True will only load those files in the dataset. Otherwise, it will scan the given path for files of the same type as the provided file extension. Only relevant iffile_extension
is provided. Defaults to False.file_creation_min_date
: The oldest possible date to consider for file creation. If None, this filter will not be applied. Defaults to None.file_modification_min_date
: The oldest possible date to consider for file modification. If None, this filter will not be applied. Defaults to None.file_creation_max_date
: The newest possible date to consider for file creation. If None, this filter will not be applied. Defaults to None.file_modification_max_date
: The newest possible date to consider for file modification. If None, this filter will not be applied. Defaults to None.min_file_size
: The minimum file size in megabytes to consider. If None, all files will be considered. Defaults to None.max_file_size
: The maximum file size in megabytes to consider. If None, all files will be considered. Defaults to None.
Variables
- static
file_extension : Union[str, collections.abc.Sequence[str], ForwardRef(None)]
- static
max_file_size : Optional[float]
- static
min_file_size : Optional[float]
- static
strict_file_extension : bool
FoveaCoordinatesAlgorithmArgumentsConfig
class FoveaCoordinatesAlgorithmArgumentsConfig( bscan_width_col: str = 'size_width', location_prefixes: Optional[SLOSegmentationLocationPrefix] = None,):
Configuration for FoveaCoordinatesAlgorithm arguments.
Variables
- static
bscan_width_col : str
- static
location_prefixes : Optional[SLOSegmentationLocationPrefix]
FoveaCoordinatesAlgorithmConfig
class FoveaCoordinatesAlgorithmConfig( name: str, arguments: Optional[FoveaCoordinatesAlgorithmArgumentsConfig] = FoveaCoordinatesAlgorithmArgumentsConfig(bscan_width_col='size_width', location_prefixes=None),):
Configuration for FoveaCoordinatesAlgorithm.
Ancestors
GAScreeningProtocolAmethystArgumentsConfig
class GAScreeningProtocolAmethystArgumentsConfig( aggregator: Optional[AggregatorConfig] = None, results_notification_email: Optional[bool] = False, trial_name: Optional[str] = None, rename_columns: Optional[dict[str, str]] = None,):
Configuration for GAScreeningProtocolAmethyst arguments.
Variables
- static
aggregator : Optional[AggregatorConfig]
- static
rename_columns : Optional[dict[str, str]]
- static
results_notification_email : Optional[bool]
- static
trial_name : Optional[str]
GAScreeningProtocolAmethystConfig
class GAScreeningProtocolAmethystConfig( name: str, arguments: Optional[GAScreeningProtocolAmethystArgumentsConfig] = GAScreeningProtocolAmethystArgumentsConfig(aggregator=None, results_notification_email=False, trial_name=None, rename_columns=None),):
Configuration for GAScreeningProtocolAmethyst.
Ancestors
Variables
- static
arguments : Optional[GAScreeningProtocolAmethystArgumentsConfig]
- static
name : str
GAScreeningProtocolBronzeArgumentsConfig
class GAScreeningProtocolBronzeArgumentsConfig( aggregator: Optional[AggregatorConfig] = None, results_notification_email: Optional[bool] = False, trial_name: Optional[str] = None, rename_columns: Optional[dict[str, str]] = None,):
Configuration for GAScreeningProtocolBronze arguments.
Variables
- static
aggregator : Optional[AggregatorConfig]
- static
rename_columns : Optional[dict[str, str]]
- static
results_notification_email : Optional[bool]
- static
trial_name : Optional[str]
GAScreeningProtocolBronzeConfig
class GAScreeningProtocolBronzeConfig( name: str, arguments: Optional[GAScreeningProtocolBronzeArgumentsConfig] = GAScreeningProtocolBronzeArgumentsConfig(aggregator=None, results_notification_email=False, trial_name=None, rename_columns=None),):
Configuration for GAScreeningProtocolBronze.
Ancestors
GAScreeningProtocolJadeArgumentsConfig
class GAScreeningProtocolJadeArgumentsConfig( aggregator: Optional[AggregatorConfig] = None, results_notification_email: Optional[bool] = False, trial_name: Optional[str] = None, rename_columns: Optional[dict[str, str]] = None,):
Configuration for GAScreeningProtocolJade arguments.
Variables
- static
aggregator : Optional[AggregatorConfig]
- static
rename_columns : Optional[dict[str, str]]
- static
results_notification_email : Optional[bool]
- static
trial_name : Optional[str]
GAScreeningProtocolJadeConfig
class GAScreeningProtocolJadeConfig( name: str, arguments: Optional[GAScreeningProtocolJadeArgumentsConfig] = GAScreeningProtocolJadeArgumentsConfig(aggregator=None, results_notification_email=False, trial_name=None, rename_columns=None),):
Configuration for GAScreeningProtocolJade.
Ancestors
GATrialCalculationAlgorithmBronzeArgumentsConfig
class GATrialCalculationAlgorithmBronzeArgumentsConfig( ga_area_include_segmentations: Optional[list[str]] = None, ga_area_exclude_segmentations: Optional[list[str]] = None, fovea_landmark_idx: Optional[int] = 1,):
Configuration for GATrialCalculationAlgorithmBronze arguments.
Variables
- static
fovea_landmark_idx : Optional[int]
- static
ga_area_exclude_segmentations : Optional[list[str]]
- static
ga_area_include_segmentations : Optional[list[str]]
GATrialCalculationAlgorithmBronzeConfig
class GATrialCalculationAlgorithmBronzeConfig( name: str, arguments: Optional[GATrialCalculationAlgorithmBronzeArgumentsConfig] = GATrialCalculationAlgorithmBronzeArgumentsConfig(ga_area_include_segmentations=None, ga_area_exclude_segmentations=None, fovea_landmark_idx=1),):
Configuration for GATrialCalculationAlgorithmBronze.
Ancestors
Variables
- static
arguments : Optional[GATrialCalculationAlgorithmBronzeArgumentsConfig]
- static
name : str
GATrialCalculationAlgorithmJadeArgumentsConfig
class GATrialCalculationAlgorithmJadeArgumentsConfig( ga_area_include_segmentations: Optional[list[str]] = None, ga_area_exclude_segmentations: Optional[list[str]] = None,):
Configuration for GATrialCalculationAlgorithmJade arguments.
Variables
- static
ga_area_exclude_segmentations : Optional[list[str]]
- static
ga_area_include_segmentations : Optional[list[str]]
GATrialCalculationAlgorithmJadeConfig
class GATrialCalculationAlgorithmJadeConfig( name: str, arguments: Optional[GATrialCalculationAlgorithmJadeArgumentsConfig] = GATrialCalculationAlgorithmJadeArgumentsConfig(ga_area_include_segmentations=None, ga_area_exclude_segmentations=None),):
Configuration for GATrialCalculationAlgorithmJade.
Ancestors
Variables
- static
arguments : Optional[GATrialCalculationAlgorithmJadeArgumentsConfig]
- static
name : str
GATrialPDFGeneratorAlgorithmAmethystArgumentsConfig
class GATrialPDFGeneratorAlgorithmAmethystArgumentsConfig( report_metadata: Optional[ReportMetadata] = None, filename_prefix: Optional[str] = None, save_path: Optional[Path] = None, filter: Optional[list[ColumnFilter]] = None, pdf_filename_columns: Optional[list[str]] = None, trial_name: Optional[str] = None,):
Configuration for GATrialPDFGeneratorAlgorithmAmethyst arguments.
Variables
- static
filename_prefix : Optional[str]
- static
filter : Optional[list[ColumnFilter]]
- static
pdf_filename_columns : Optional[list[str]]
- static
report_metadata : Optional[ReportMetadata]
- static
save_path : Optional[pathlib.Path]
- static
trial_name : Optional[str]
GATrialPDFGeneratorAlgorithmAmethystConfig
class GATrialPDFGeneratorAlgorithmAmethystConfig( name: str, arguments: Optional[GATrialPDFGeneratorAlgorithmAmethystArgumentsConfig] = GATrialPDFGeneratorAlgorithmAmethystArgumentsConfig(report_metadata=None, filename_prefix=None, save_path=None, filter=None, pdf_filename_columns=None, trial_name=None),):
Configuration for GATrialPDFGeneratorAlgorithmAmethyst.
Ancestors
Variables
- static
arguments : Optional[GATrialPDFGeneratorAlgorithmAmethystArgumentsConfig]
- static
name : str
GATrialPDFGeneratorAlgorithmJadeArgumentsConfig
class GATrialPDFGeneratorAlgorithmJadeArgumentsConfig( report_metadata: Optional[ReportMetadata] = None, filename_prefix: Optional[str] = None, save_path: Optional[Path] = None, filter: Optional[list[ColumnFilter]] = None, pdf_filename_columns: Optional[list[str]] = None, trial_name: Optional[str] = None,):
Configuration for GATrialPDFGeneratorAlgorithmJade arguments.
Variables
- static
filename_prefix : Optional[str]
- static
filter : Optional[list[ColumnFilter]]
- static
pdf_filename_columns : Optional[list[str]]
- static
report_metadata : Optional[ReportMetadata]
- static
save_path : Optional[pathlib.Path]
- static
trial_name : Optional[str]
GATrialPDFGeneratorAlgorithmJadeConfig
class GATrialPDFGeneratorAlgorithmJadeConfig( name: str, arguments: Optional[GATrialPDFGeneratorAlgorithmJadeArgumentsConfig] = GATrialPDFGeneratorAlgorithmJadeArgumentsConfig(report_metadata=None, filename_prefix=None, save_path=None, filter=None, pdf_filename_columns=None, trial_name=None),):
Configuration for GATrialPDFGeneratorAlgorithmJade.
Ancestors
Variables
- static
arguments : Optional[GATrialPDFGeneratorAlgorithmJadeArgumentsConfig]
- static
name : str
GenericAlgorithmConfig
class GenericAlgorithmConfig(name: str, arguments: _JSONDict = {}):
Configuration for unspecified algorithm plugins.
Raises
ValueError
: if the algorithm name starts withbitfount.
Ancestors
GenericProtocolConfig
class GenericProtocolConfig(name: str, arguments: _JSONDict = {}):
Configuration for unspecified protocol plugins.
Raises
ValueError
: if the protocol name starts withbitfount.
Ancestors
HubConfig
class HubConfig(url: str = 'https://hub.bitfount.com'):
Configuration for the hub.
Variables
- static
url : str
HuggingFaceImageClassificationInferenceAlgorithmConfig
class HuggingFaceImageClassificationInferenceAlgorithmConfig( name: str, arguments: Optional[HuggingFaceImageClassificationInferenceArgumentsConfig],):
Configuration for HuggingFaceImageClassificationInference.
Ancestors
Variables
- static
arguments : Optional[HuggingFaceImageClassificationInferenceArgumentsConfig]
- static
name : str
HuggingFaceImageClassificationInferenceArgumentsConfig
class HuggingFaceImageClassificationInferenceArgumentsConfig( model_id: str, apply_softmax_to_predictions: bool = True, batch_size: int = 1, seed: int = 42, top_k: int = 5,):
Configuration for HuggingFaceImageClassificationInference arguments.
Variables
- static
apply_softmax_to_predictions : bool
- static
batch_size : int
- static
model_id : str
- static
seed : int
- static
top_k : int
HuggingFaceImageSegmentationInferenceAlgorithmConfig
class HuggingFaceImageSegmentationInferenceAlgorithmConfig( name: str, arguments: Optional[HuggingFaceImageSegmentationInferenceArgumentsConfig],):
Configuration for HuggingFaceImageSegmentationInference.
Ancestors
Variables
- static
arguments : Optional[HuggingFaceImageSegmentationInferenceArgumentsConfig]
- static
name : str
HuggingFaceImageSegmentationInferenceArgumentsConfig
class HuggingFaceImageSegmentationInferenceArgumentsConfig( model_id: str, alpha: float = 0.3, batch_size: int = 1, dataframe_output: bool = False, mask_threshold: float = 0.5, overlap_mask_area_threshold: float = 0.5, seed: int = 42, save_path: Optional[str] = None, subtask: Optional[str] = None, threshold: float = 0.9,):
Configuration for HuggingFaceImageSegmentationInference arguments.
Variables
- static
alpha : float
- static
batch_size : int
- static
dataframe_output : bool
- static
mask_threshold : float
- static
model_id : str
- static
overlap_mask_area_threshold : float
- static
save_path : Optional[str]
- static
seed : int
- static
subtask : Optional[str]
- static
threshold : float
HuggingFacePerplexityEvaluationAlgorithmConfig
class HuggingFacePerplexityEvaluationAlgorithmConfig( name: str, arguments: Optional[HuggingFacePerplexityEvaluationArgumentsConfig],):
Configuration for the HuggingFacePerplexityEvaluation algorithm.
Ancestors
Variables
- static
arguments : Optional[HuggingFacePerplexityEvaluationArgumentsConfig]
- static
name : str
HuggingFacePerplexityEvaluationArgumentsConfig
class HuggingFacePerplexityEvaluationArgumentsConfig( model_id: str, stride: int = 512, seed: int = 42,):
Configuration for the HuggingFacePerplexityEvaluation algorithm arguments.
HuggingFaceTextClassificationInferenceAlgorithmConfig
class HuggingFaceTextClassificationInferenceAlgorithmConfig( name: str, arguments: Optional[HuggingFaceTextClassificationInferenceArgumentsConfig],):
Configuration for HuggingFaceTextClassificationInference.
Ancestors
Variables
- static
arguments : Optional[HuggingFaceTextClassificationInferenceArgumentsConfig]
- static
name : str
HuggingFaceTextClassificationInferenceArgumentsConfig
class HuggingFaceTextClassificationInferenceArgumentsConfig( model_id: str, batch_size: int = 1, function_to_apply: Optional[str] = None, seed: int = 42, top_k: int = 5,):
Configuration for HuggingFaceTextClassificationInference arguments.
Variables
- static
batch_size : int
- static
function_to_apply : Optional[str]
- static
model_id : str
- static
seed : int
- static
top_k : int
HuggingFaceTextGenerationInferenceAlgorithmConfig
class HuggingFaceTextGenerationInferenceAlgorithmConfig( name: str, arguments: Optional[HuggingFaceTextGenerationInferenceArgumentsConfig],):
Configuration for the HuggingFaceTextGenerationInference algorithm.
Ancestors
Variables
- static
arguments : Optional[HuggingFaceTextGenerationInferenceArgumentsConfig]
- static
name : str
HuggingFaceTextGenerationInferenceArgumentsConfig
class HuggingFaceTextGenerationInferenceArgumentsConfig( model_id: str, prompt_format: Optional[str] = None, max_length: int = 50, num_return_sequences: int = 1, seed: int = 42, min_new_tokens: int = 1, repetition_penalty: float = 1.0, num_beams: int = 1, early_stopping: bool = True, pad_token_id: Optional[int] = None, eos_token_id: Optional[int] = None, device: Optional[str] = None, torch_dtype: str = 'float32',):
Configuration for the HuggingFaceTextGenerationInference algorithm arguments.
Variables
- static
device : Optional[str]
- static
early_stopping : bool
- static
eos_token_id : Optional[int]
- static
max_length : int
- static
min_new_tokens : int
- static
model_id : str
- static
num_beams : int
- static
num_return_sequences : int
- static
pad_token_id : Optional[int]
- static
prompt_format : Optional[str]
- static
repetition_penalty : float
- static
seed : int
- static
torch_dtype : str
InferenceAndCSVReportArgumentsConfig
class InferenceAndCSVReportArgumentsConfig(aggregator: Optional[AggregatorConfig] = None):
Configuration for InferenceAndCSVReport arguments.
Variables
- static
aggregator : Optional[AggregatorConfig]
InferenceAndCSVReportConfig
class InferenceAndCSVReportConfig( name: str, arguments: Optional[InferenceAndCSVReportArgumentsConfig] = InferenceAndCSVReportArgumentsConfig(aggregator=None),):
Configuration for InferenceAndCSVReport.
Ancestors
InferenceAndReturnCSVReportArgumentsConfig
class InferenceAndReturnCSVReportArgumentsConfig( aggregator: Optional[AggregatorConfig] = None,):
Configuration for InferenceAndReturnCSVReport arguments.
Variables
- static
aggregator : Optional[AggregatorConfig]
InferenceAndReturnCSVReportConfig
class InferenceAndReturnCSVReportConfig( name: str, arguments: Optional[InferenceAndReturnCSVReportArgumentsConfig] = InferenceAndReturnCSVReportArgumentsConfig(aggregator=None),):
Configuration for InferenceAndReturnCSVReport.
Ancestors
Variables
- static
arguments : Optional[InferenceAndReturnCSVReportArgumentsConfig]
- static
name : str
InstrumentedInferenceAndCSVReportArgumentsConfig
class InstrumentedInferenceAndCSVReportArgumentsConfig( aggregator: Optional[AggregatorConfig] = None,):
Configuration for InstrumentedInferenceAndCSVReport arguments.
Variables
- static
aggregator : Optional[AggregatorConfig]
InstrumentedInferenceAndCSVReportConfig
class InstrumentedInferenceAndCSVReportConfig( name: str, arguments: Optional[InstrumentedInferenceAndCSVReportArgumentsConfig] = InstrumentedInferenceAndCSVReportArgumentsConfig(aggregator=None),):
Configuration for InstrumentedInferenceAndCSVReport.
Ancestors
Variables
- static
arguments : Optional[InstrumentedInferenceAndCSVReportArgumentsConfig]
- static
name : str
JWT
class JWT(jwt: str, expires: datetime, get_token: Callable[[], tuple[str, datetime]]):
Externally managed JWT for BitfountSession.
Variables
- static
expires : datetime.datetime
- static
get_token : collections.abc.Callable[[], tuple[str, datetime.datetime]]
- static
jwt : str
ModelAlgorithmConfig
class ModelAlgorithmConfig( name: str, arguments: Optional[Any] = None, model: Optional[ModelConfig] = None, pretrained_file: Optional[Path] = None,):
Configuration for the Model algorithms.
Ancestors
Subclasses
ModelConfig
class ModelConfig( name: Optional[str] = None, structure: Optional[ModelStructureConfig] = None, bitfount_model: Optional[BitfountModelReferenceConfig] = None, hyperparameters: _JSONDict = {}, logger_config: Optional[LoggerConfig] = None, dp_config: Optional[DPModellerConfig] = None,):
Configuration for the model.
Variables
- static
bitfount_model : Optional[BitfountModelReferenceConfig]
- static
dp_config : Optional[DPModellerConfig]
- static
hyperparameters : dict[str, typing.Any]
- static
logger_config : Optional[LoggerConfig]
- static
name : Optional[str]
- static
structure : Optional[ModelStructureConfig]
ModelEvaluationAlgorithmConfig
class ModelEvaluationAlgorithmConfig( name: str, arguments: Optional[ModelEvaluationArgumentsConfig], model: Optional[ModelConfig] = None, pretrained_file: Optional[Path] = None,):
Configuration for the ModelEvaluation algorithm.
Ancestors
ModelEvaluationArgumentsConfig
class ModelEvaluationArgumentsConfig():
Configuration for the ModelEvaluation algorithm arguments.
ModelInferenceAlgorithmConfig
class ModelInferenceAlgorithmConfig( name: str, arguments: ModelInferenceArgumentsConfig = ModelInferenceArgumentsConfig(class_outputs=None), model: Optional[ModelConfig] = None, pretrained_file: Optional[Path] = None,):
Configuration for the ModelInference algorithm.
Ancestors
ModelInferenceArgumentsConfig
class ModelInferenceArgumentsConfig(class_outputs: Optional[list[str]] = None):
Configuration for the ModelInference algorithm arguments.
Variables
- static
class_outputs : Optional[list[str]]
ModelStructureConfig
class ModelStructureConfig(name: str, arguments: _JSONDict = {}):
Configuration for the ModelStructure.
ModelTrainingAndEvaluationAlgorithmConfig
class ModelTrainingAndEvaluationAlgorithmConfig( name: str, arguments: Optional[ModelTrainingAndEvaluationArgumentsConfig], model: Optional[ModelConfig] = None, pretrained_file: Optional[Path] = None,):
Configuration for the ModelTrainingAndEvaluation algorithm.
Ancestors
ModelTrainingAndEvaluationArgumentsConfig
class ModelTrainingAndEvaluationArgumentsConfig():
Configuration for the ModelTrainingAndEvaluation algorithm arguments.
ModellerConfig
class ModellerConfig( pods: PodsConfig, task: TaskConfig, secrets: Optional[Union[APIKeys, JWT]] = None, modeller: ModellerUserConfig = ModellerUserConfig(username='_default', identity_verification_method='oidc-device-code', private_key_file=None), hub: HubConfig = HubConfig(url='https://hub.bitfount.com'), message_service: MessageServiceConfig = MessageServiceConfig(url='messaging.staging.bitfount.com', port=443, tls=True, use_local_storage=False), version: Optional[str] = None, project_id: Optional[str] = None, run_on_new_data_only: bool = False, batched_execution: Optional[bool] = None,):
Full configuration for the modeller.
Subclasses
Variables
- static
batched_execution : Optional[bool]
- static
hub : HubConfig
- static
message_service : MessageServiceConfig
- static
modeller : ModellerUserConfig
- static
pods : PodsConfig
- static
project_id : Optional[str]
- static
run_on_new_data_only : bool
- static
task : TaskConfig
- static
version : Optional[str]
ModellerUserConfig
class ModellerUserConfig( username: str = '_default', identity_verification_method: str = 'oidc-device-code', private_key_file: Optional[Path] = None,):
Configuration for the modeller.
Arguments
username
: The username of the modeller. This can be picked up automatically from the session but can be overridden here.identity_verification_method
: The method to use for identity verification. Accepts one of the values inIDENTITY_VERIFICATION_METHODS
, i.e. one ofkey-based
,oidc-auth-code
oroidc-device-code
.private_key_file
: The path to the private key file for key-based identity verification.
Variables
- static
identity_verification_method : str
- static
private_key_file : Optional[pathlib.Path]
- static
username : str
PathConfig
class PathConfig(path: Path):
Configuration for the path.
Variables
- static
path : pathlib.Path
PodConfig
class PodConfig( name: str, secrets: Optional[Union[APIKeys, JWT]] = None, pod_details_config: Optional[PodDetailsConfig] = None, datasource: Optional[str] = None, data_config: Optional[PodDataConfig] = None, schema: Optional[Path] = None, datasources: Optional[list[DatasourceConfig]] = None, access_manager: AccessManagerConfig = AccessManagerConfig(url='https://am.hub.bitfount.com'), hub: HubConfig = HubConfig(url='https://hub.bitfount.com'), message_service: MessageServiceConfig = MessageServiceConfig(url='messaging.staging.bitfount.com', port=443, tls=True, use_local_storage=False), differential_privacy: Optional[DPPodConfig] = None, approved_pods: Optional[list[str]] = None, username: str = '_default', update_schema: bool = False, pod_db: Union[bool, PodDbConfig] = False, show_datapoints_with_results_in_db: bool = True, version: Optional[str] = None,):
Full configuration for the pod.
Raises
ValueError
: If a username is not provided alongside API keys.
Variables
- static
access_manager : AccessManagerConfig
- static
approved_pods : Optional[list[str]]
- static
data_config : Optional[PodDataConfig]
- static
datasource : Optional[str]
- static
datasources : Optional[list[DatasourceConfig]]
- static
differential_privacy : Optional[DPPodConfig]
- static
hub : HubConfig
- static
message_service : MessageServiceConfig
- static
name : str
- static
pod_db : Union[bool, PodDbConfig]
- static
pod_details_config : Optional[PodDetailsConfig]
- static
schema : Optional[pathlib.Path]
- static
show_datapoints_with_results_in_db : bool
- static
update_schema : bool
- static
username : str
- static
version : Optional[str]
pod_id : str
- The pod ID of the pod specified.
PodDataConfig
class PodDataConfig( force_stypes: Optional[dict] = None, column_descriptions: Optional[Union[Mapping[str, Mapping[str, str]], Mapping[str, str]]] = None, table_descriptions: Optional[Mapping[str, str]] = None, description: Optional[str] = None, ignore_cols: Optional[Union[list[str], Mapping[str, list[str]]]] = None, modifiers: Optional[dict[str, DataPathModifiers]] = None, datasource_args: _JSONDict = {}, data_split: Optional[DataSplitConfig] = None, auto_tidy: bool = False, file_system_filters: Optional[FileSystemFilterConfig] = None,):
Configuration for the Schema, BaseSource and Pod.
Arguments
force_stypes
: The semantic types to force for the data. Can either be: - A mapping from pod name to type-to-column mapping (e.g.{"pod_name": {"categorical": ["col1", "col2"]}}
). - A direct mapping from type to column names (e.g.{"categorical": ["col1", "col2"]}
).ignore_cols
: The columns to ignore. This is passed to the data source.modifiers
: The modifiers to apply to the data. This is passed to theBaseSource
.datasource_args
: Key-value pairs of arguments to pass to the data source constructor.data_split
: The data split configuration. This is passed to the data source.auto_tidy
: Whether to automatically tidy the data. This is used by thePod
and will result in removal of NaNs and normalisation of numeric values. Defaults to False.file_system_filters
: Filter files based on various criteria for datasources that areFileSystemIterable
. Defaults to None.
Variables
- static
auto_tidy : bool
- static
column_descriptions : Union[collections.abc.Mapping[str, collections.abc.Mapping[str, str]], collections.abc.Mapping[str, str], ForwardRef(None)]
- static
data_split : Optional[DataSplitConfig]
- static
datasource_args : dict[str, typing.Any]
- static
description : Optional[str]
- static
file_system_filters : Optional[FileSystemFilterConfig]
- static
force_stypes : Optional[dict]
- static
ignore_cols : Union[list[str], collections.abc.Mapping[str, list[str]], ForwardRef(None)]
- static
modifiers : Optional[dict[str, DataPathModifiers]]
- static
table_descriptions : Optional[collections.abc.Mapping[str, str]]
PodDbConfig
class PodDbConfig(path: Path):
Configuration of the Pod DB.
Variables
- static
path : pathlib.Path
PodDetailsConfig
class PodDetailsConfig(display_name: str, description: str = ''):
Configuration for the pod details.
Arguments
display_name
: The display name of the pod.description
: The description of the pod.
PodsConfig
class PodsConfig(identifiers: list[str]):
Configuration for the pods to use for the modeller.
Variables
- static
identifiers : list[str]
PrivateSqlQueryAlgorithmConfig
class PrivateSqlQueryAlgorithmConfig( name: str, arguments: PrivateSqlQueryArgumentsConfig,):
Configuration for the PrivateSqlQuery algorithm.
Ancestors
PrivateSqlQueryArgumentsConfig
class PrivateSqlQueryArgumentsConfig( query: str, epsilon: float, delta: float, column_ranges: dict[str, Optional[PrivateSqlQueryColumnArgumentsConfig]], table: Optional[str] = None, db_schema: Optional[str] = None,):
Configuration for the PrivateSqlQuery algorithm arguments.
Variables
- static
column_ranges : dict[str, typing.Optional[PrivateSqlQueryColumnArgumentsConfig]]
- static
db_schema : Optional[str]
- static
delta : float
- static
epsilon : float
- static
query : str
- static
table : Optional[str]
PrivateSqlQueryColumnArgumentsConfig
class PrivateSqlQueryColumnArgumentsConfig( lower: Optional[int] = None, upper: Optional[int] = None,):
Configuration for the PrivateSqlQuery algorithm column arguments.
ProtocolConfig
class ProtocolConfig(name: str, arguments: Optional[Any] = None):
Configuration for the Protocol.
Subclasses
- FederatedAveragingProtocolConfig
- GAScreeningProtocolAmethystConfig
- GAScreeningProtocolBronzeConfig
- GAScreeningProtocolJadeConfig
- GenericProtocolConfig
- InferenceAndCSVReportConfig
- InferenceAndReturnCSVReportConfig
- InstrumentedInferenceAndCSVReportConfig
- ResultsOnlyProtocolConfig
- RetinalDiseaseProtocolCobaltConfig
ResultsOnlyProtocolArgumentsConfig
class ResultsOnlyProtocolArgumentsConfig( aggregator: Optional[AggregatorConfig] = None, secure_aggregation: bool = False,):
Configuration for the ResultsOnly Protocol arguments.
ResultsOnlyProtocolConfig
class ResultsOnlyProtocolConfig( name: str, arguments: Optional[ResultsOnlyProtocolArgumentsConfig] = ResultsOnlyProtocolArgumentsConfig(aggregator=None, secure_aggregation=False),):
Configuration for the ResultsOnly Protocol.
Ancestors
RetinalDiseaseProtocolCobaltArgumentsConfig
class RetinalDiseaseProtocolCobaltArgumentsConfig( aggregator: Optional[AggregatorConfig] = None,):
Configuration for RetinalDiseaseProtocolCobalt arguments.
Variables
- static
aggregator : Optional[AggregatorConfig]
RetinalDiseaseProtocolCobaltConfig
class RetinalDiseaseProtocolCobaltConfig( name: str, arguments: Optional[RetinalDiseaseProtocolCobaltArgumentsConfig] = RetinalDiseaseProtocolCobaltArgumentsConfig(aggregator=None),):
Configuration for RetinalDiseaseProtocolCobalt.
Ancestors
Variables
- static
arguments : Optional[RetinalDiseaseProtocolCobaltArgumentsConfig]
- static
name : str
SqlQueryAlgorithmConfig
class SqlQueryAlgorithmConfig(name: str, arguments: SqlQueryArgumentsConfig):
Configuration for the SqlQuery algorithm.
Ancestors
SqlQueryArgumentsConfig
class SqlQueryArgumentsConfig(query: str, table: Optional[str] = None):
Configuration for the SqlQuery algorithm arguments.
TIMMFineTuningAlgorithmConfig
class TIMMFineTuningAlgorithmConfig( name: str, arguments: Optional[TIMMFineTuningArgumentsConfig],):
Configuration for TIMMFineTuning algorithm.
Ancestors
TIMMFineTuningArgumentsConfig
class TIMMFineTuningArgumentsConfig( model_id: str, args: Optional[TIMMTrainingConfig] = None, batch_transformations: Optional[Union[list[Union[str, _JSONDict]], dict[str, list[Union[str, _JSONDict]]]]] = None, labels: Optional[list[str]] = None, return_weights: bool = False, save_path: Optional[Path] = None,):
Configuration for TIMMFineTuning algorithm arguments.
Variables
- static
args : Optional[TIMMTrainingConfig]
- static
batch_transformations : Union[list[Union[str, dict[str, Any]]], dict[str, list[Union[str, dict[str, Any]]]], ForwardRef(None)]
- static
labels : Optional[list[str]]
- static
model_id : str
- static
return_weights : bool
- static
save_path : Optional[pathlib.Path]
TIMMInferenceAlgorithmConfig
class TIMMInferenceAlgorithmConfig( name: str, arguments: Optional[TIMMInferenceArgumentsConfig],):
Configuration for TIMMInference algorithm.
Ancestors
TIMMInferenceArgumentsConfig
class TIMMInferenceArgumentsConfig( model_id: str, num_classes: Optional[int] = None, checkpoint_path: Optional[Path] = None, class_outputs: Optional[list[str]] = None,):
Configuration for TIMMInference algorithm arguments.
Variables
- static
checkpoint_path : Optional[pathlib.Path]
- static
class_outputs : Optional[list[str]]
- static
model_id : str
- static
num_classes : Optional[int]
TaskConfig
class TaskConfig( protocol: Union[ProtocolConfig._get_subclasses()], algorithm: Union[Union[AlgorithmConfig._get_subclasses()], list[Union[AlgorithmConfig._get_subclasses()]]], data_structure: DataStructureConfig, aggregator: Optional[AggregatorConfig] = None, transformation_file: Optional[Path] = None,):
Configuration for the task.
Variables
- static
aggregator : Optional[AggregatorConfig]
- static
algorithm : Union[TrialInclusionCriteriaMatchAlgorithmBronzeConfig, TrialInclusionCriteriaMatchAlgorithmAmethystConfig, TrialInclusionCriteriaMatchAlgorithmJadeConfig, GATrialPDFGeneratorAlgorithmAmethystConfig, GATrialPDFGeneratorAlgorithmJadeConfig, GATrialCalculationAlgorithmBronzeConfig, GATrialCalculationAlgorithmJadeConfig, bitfount.runners.config_schemas._SimpleCSVAlgorithmAlgorithmConfig, FoveaCoordinatesAlgorithmConfig, ETDRSAlgorithmConfig, CSVReportGeneratorOphthalmologyAlgorithmConfig, TIMMInferenceAlgorithmConfig, TIMMFineTuningAlgorithmConfig, HuggingFaceTextClassificationInferenceAlgorithmConfig, HuggingFaceImageSegmentationInferenceAlgorithmConfig, HuggingFaceImageClassificationInferenceAlgorithmConfig, CSVReportAlgorithmConfig, HuggingFaceTextGenerationInferenceAlgorithmConfig, HuggingFacePerplexityEvaluationAlgorithmConfig, PrivateSqlQueryAlgorithmConfig, SqlQueryAlgorithmConfig, ModelInferenceAlgorithmConfig, ModelEvaluationAlgorithmConfig, ModelTrainingAndEvaluationAlgorithmConfig, FederatedModelTrainingAlgorithmConfig, GenericAlgorithmConfig, list[Union[TrialInclusionCriteriaMatchAlgorithmBronzeConfig, TrialInclusionCriteriaMatchAlgorithmAmethystConfig, TrialInclusionCriteriaMatchAlgorithmJadeConfig, GATrialPDFGeneratorAlgorithmAmethystConfig, GATrialPDFGeneratorAlgorithmJadeConfig, GATrialCalculationAlgorithmBronzeConfig, GATrialCalculationAlgorithmJadeConfig, bitfount.runners.config_schemas._SimpleCSVAlgorithmAlgorithmConfig, FoveaCoordinatesAlgorithmConfig, ETDRSAlgorithmConfig, CSVReportGeneratorOphthalmologyAlgorithmConfig, TIMMInferenceAlgorithmConfig, TIMMFineTuningAlgorithmConfig, HuggingFaceTextClassificationInferenceAlgorithmConfig, HuggingFaceImageSegmentationInferenceAlgorithmConfig, HuggingFaceImageClassificationInferenceAlgorithmConfig, CSVReportAlgorithmConfig, HuggingFaceTextGenerationInferenceAlgorithmConfig, HuggingFacePerplexityEvaluationAlgorithmConfig, PrivateSqlQueryAlgorithmConfig, SqlQueryAlgorithmConfig, ModelInferenceAlgorithmConfig, ModelEvaluationAlgorithmConfig, ModelTrainingAndEvaluationAlgorithmConfig, FederatedModelTrainingAlgorithmConfig, GenericAlgorithmConfig]]]
- static
data_structure : DataStructureConfig
- static
protocol : Union[GAScreeningProtocolBronzeConfig, GAScreeningProtocolAmethystConfig, GAScreeningProtocolJadeConfig, RetinalDiseaseProtocolCobaltConfig, InferenceAndReturnCSVReportConfig, InstrumentedInferenceAndCSVReportConfig, InferenceAndCSVReportConfig, FederatedAveragingProtocolConfig, ResultsOnlyProtocolConfig, GenericProtocolConfig]
- static
transformation_file : Optional[pathlib.Path]
TemplatedModellerConfig
class TemplatedModellerConfig( pods: PodsConfig, task: TaskConfig, secrets: Optional[Union[APIKeys, JWT]] = None, modeller: ModellerUserConfig = ModellerUserConfig(username='_default', identity_verification_method='oidc-device-code', private_key_file=None), hub: HubConfig = HubConfig(url='https://hub.bitfount.com'), message_service: MessageServiceConfig = MessageServiceConfig(url='messaging.staging.bitfount.com', port=443, tls=True, use_local_storage=False), version: Optional[str] = None, project_id: Optional[str] = None, run_on_new_data_only: bool = False, batched_execution: Optional[bool] = None, template: Any = None,):
Schema for task templates.
Ancestors
Variables
- static
template : Any
TrialInclusionCriteriaMatchAlgorithmAmethystArgumentsConfig
class TrialInclusionCriteriaMatchAlgorithmAmethystArgumentsConfig( cnv_threshold: float = 0.5, largest_ga_lesion_lower_bound: float = 1.26, total_ga_area_lower_bound: float = 2.5, total_ga_area_upper_bound: float = 17.5,):
Configuration for TrialInclusionCriteriaMatchAlgorithmAmethyst arguments.
Variables
- static
cnv_threshold : float
- static
largest_ga_lesion_lower_bound : float
- static
total_ga_area_lower_bound : float
- static
total_ga_area_upper_bound : float
TrialInclusionCriteriaMatchAlgorithmAmethystConfig
class TrialInclusionCriteriaMatchAlgorithmAmethystConfig( name: str, arguments: Optional[TrialInclusionCriteriaMatchAlgorithmAmethystArgumentsConfig] = TrialInclusionCriteriaMatchAlgorithmAmethystArgumentsConfig(cnv_threshold=0.5, largest_ga_lesion_lower_bound=1.26, total_ga_area_lower_bound=2.5, total_ga_area_upper_bound=17.5),):
Configuration for TrialInclusionCriteriaMatchAlgorithmAmethyst.
Ancestors
Variables
- static
arguments : Optional[TrialInclusionCriteriaMatchAlgorithmAmethystArgumentsConfig]
- static
name : str
TrialInclusionCriteriaMatchAlgorithmBronzeArgumentsConfig
class TrialInclusionCriteriaMatchAlgorithmBronzeArgumentsConfig( cnv_threshold: float = 0.5, largest_ga_lesion_lower_bound: float = 1.26, total_ga_area_lower_bound: float = 2.5, total_ga_area_upper_bound: float = 17.5, distance_from_fovea_lower_bound: float = 0.0, distance_from_fovea_upper_bound: float = inf, exclude_foveal_ga: bool = False,):
Configuration for TrialInclusionCriteriaMatchAlgorithmBronze arguments.
Variables
- static
cnv_threshold : float
- static
distance_from_fovea_lower_bound : float
- static
distance_from_fovea_upper_bound : float
- static
exclude_foveal_ga : bool
- static
largest_ga_lesion_lower_bound : float
- static
total_ga_area_lower_bound : float
- static
total_ga_area_upper_bound : float
TrialInclusionCriteriaMatchAlgorithmBronzeConfig
class TrialInclusionCriteriaMatchAlgorithmBronzeConfig( name: str, arguments: Optional[TrialInclusionCriteriaMatchAlgorithmBronzeArgumentsConfig] = TrialInclusionCriteriaMatchAlgorithmBronzeArgumentsConfig(cnv_threshold=0.5, largest_ga_lesion_lower_bound=1.26, total_ga_area_lower_bound=2.5, total_ga_area_upper_bound=17.5, distance_from_fovea_lower_bound=0.0, distance_from_fovea_upper_bound=inf, exclude_foveal_ga=False),):
Configuration for TrialInclusionCriteriaMatchAlgorithmBronze.
Ancestors
Variables
- static
arguments : Optional[TrialInclusionCriteriaMatchAlgorithmBronzeArgumentsConfig]
- static
name : str
TrialInclusionCriteriaMatchAlgorithmJadeArgumentsConfig
class TrialInclusionCriteriaMatchAlgorithmJadeArgumentsConfig():
Configuration for TrialInclusionCriteriaMatchAlgorithmJade arguments.
TrialInclusionCriteriaMatchAlgorithmJadeConfig
class TrialInclusionCriteriaMatchAlgorithmJadeConfig( name: str, arguments: Optional[TrialInclusionCriteriaMatchAlgorithmJadeArgumentsConfig] = TrialInclusionCriteriaMatchAlgorithmJadeArgumentsConfig(),):
Configuration for TrialInclusionCriteriaMatchAlgorithmJade.
Ancestors
Variables
- static
arguments : Optional[TrialInclusionCriteriaMatchAlgorithmJadeArgumentsConfig]
- static
name : str