algorithm_schemas
Config YAML specification classes related to algorithms.
Classes
AggregatorConfig
class AggregatorConfig(    secure: bool, weights: Optional[dict[str, Union[int, float]]] = None,):Configuration for the Aggregator.
AlgorithmConfig
class AlgorithmConfig(name: str, arguments: Optional[Any] = None):Configuration for the Algorithm.
Subclasses
- BscanImageAndMaskGenerationAlgorithmConfig
 - CSVReportAlgorithmConfig
 - CSVReportGeneratorOphthalmologyAlgorithmConfig
 - EHRPatientInfoDownloadAlgorithmConfig
 - EHRPatientQueryAlgorithmConfig
 - ETDRSAlgorithmConfig
 - FluidVolumeCalculationAlgorithmConfig
 - FoveaCoordinatesAlgorithmConfig
 - GATrialCalculationAlgorithmAmethystConfig
 - GATrialCalculationAlgorithmBronzeConfig
 - GATrialCalculationAlgorithmCharcoalConfig
 - GATrialCalculationAlgorithmJadeConfig
 - GATrialPDFGeneratorAlgorithmAmethystConfig
 - GATrialPDFGeneratorAlgorithmJadeConfig
 - GenericAlgorithmConfig
 - HuggingFaceImageClassificationInferenceAlgorithmConfig
 - HuggingFaceImageSegmentationInferenceAlgorithmConfig
 - HuggingFacePerplexityEvaluationAlgorithmConfig
 - HuggingFaceTextClassificationInferenceAlgorithmConfig
 - HuggingFaceTextGenerationInferenceAlgorithmConfig
 - ImageSelectionAlgorithmConfig
 - ModelAlgorithmConfig
 - PrivateSqlQueryAlgorithmConfig
 - RecordFilterAlgorithmConfig
 - ReduceCSVAlgorithmCharcoalConfig
 - S3UploadAlgorithmConfig
 - SqlQueryAlgorithmConfig
 - TIMMFineTuningAlgorithmConfig
 - TIMMInferenceAlgorithmConfig
 - TrialInclusionCriteriaMatchAlgorithmAmethystConfig
 - TrialInclusionCriteriaMatchAlgorithmBronzeConfig
 - TrialInclusionCriteriaMatchAlgorithmCharcoalConfig
 - TrialInclusionCriteriaMatchAlgorithmJadeConfig
 - bitfount.runners.config_schemas.algorithm_schemas._SimpleCSVAlgorithmAlgorithmConfig
 
BscanImageAndMaskGenerationAlgorithmArgumentsConfig
class BscanImageAndMaskGenerationAlgorithmArgumentsConfig(    segmentation_configs: list[bscan_mod.SegmentationConfig],    save_path: Optional[Path] = None,    output_original_bscans: Optional[bool] = False,    image_format: Optional[bscan_mod.ImageFormats] = ImageFormats.JPEG,    image_optimize: Optional[bool] = True,    image_quality: Optional[int] = 90,    image_subsampling: Optional[int] = 0,    image_progressive: Optional[bool] = True,    image_transparency: Optional[bool] = False,):Configuration for BscanImageAndMaskGenerationAlgorithm arguments.
Variables
- static 
image_format : Optional[ImageFormats] 
- static 
image_optimize : Optional[bool] 
- static 
image_progressive : Optional[bool] 
- static 
image_quality : Optional[int] 
- static 
image_subsampling : Optional[int] 
- static 
image_transparency : Optional[bool] 
- static 
output_original_bscans : Optional[bool] 
- static 
save_path : Optional[pathlib.Path] 
- static 
segmentation_configs : list[SegmentationConfig] 
BscanImageAndMaskGenerationAlgorithmConfig
class BscanImageAndMaskGenerationAlgorithmConfig(    name: str, arguments: Optional[BscanImageAndMaskGenerationAlgorithmArgumentsConfig],):Configuration for BscanImageAndMaskGenerationAlgorithm.
Ancestors
Variables
- static 
arguments : Optional[BscanImageAndMaskGenerationAlgorithmArgumentsConfig] 
- static 
name : str 
CSVReportAlgorithmArgumentsConfig
class CSVReportAlgorithmArgumentsConfig(    save_path: Optional[Path] = None,    original_cols: Optional[list[str]] = None,    filter: Optional[list[ColumnFilter]] = None,):Configuration for CSVReportAlgorithm arguments.
Variables
- static 
filter : Optional[list[ColumnFilter]] 
- static 
original_cols : Optional[list[str]] 
- static 
save_path : Optional[pathlib.Path] 
CSVReportAlgorithmConfig
class CSVReportAlgorithmConfig(    name: str,    arguments: Optional[CSVReportAlgorithmArgumentsConfig] = CSVReportAlgorithmArgumentsConfig(save_path=None, original_cols=None, filter=None),):Configuration for CSVReportAlgorithm.
Ancestors
CSVReportGeneratorOphthalmologyAlgorithmArgumentsConfig
class CSVReportGeneratorOphthalmologyAlgorithmArgumentsConfig(    save_path: Optional[Path] = None,    trial_name: Optional[str] = None,    original_cols: Optional[list[str]] = None,    aux_cols: Optional[list[str]] = [],    rename_columns: Optional[dict[str, str]] = None,    filter: Optional[list[ColumnFilter]] = None,    match_patient_visit: Optional[MatchPatientVisit] = None,    matched_csv_path: Optional[Path] = None,    produce_matched_only: bool = True,    csv_extensions: Optional[list[str]] = None,    produce_trial_notes_csv: bool = False,    sorting_columns: Optional[dict[str, str]] = None,):Configuration for CSVReportGeneratorOphthalmologyAlgorithm arguments.
Variables
- static 
aux_cols : Optional[list[str]] 
- static 
csv_extensions : Optional[list[str]] 
- static 
filter : Optional[list[ColumnFilter]] 
- static 
match_patient_visit : Optional[MatchPatientVisit] 
- static 
matched_csv_path : Optional[pathlib.Path] 
- static 
original_cols : Optional[list[str]] 
- static 
produce_matched_only : bool 
- static 
produce_trial_notes_csv : bool 
- static 
rename_columns : Optional[dict[str, str]] 
- static 
save_path : Optional[pathlib.Path] 
- static 
sorting_columns : Optional[dict[str, str]] 
- static 
trial_name : Optional[str] 
CSVReportGeneratorOphthalmologyAlgorithmConfig
class CSVReportGeneratorOphthalmologyAlgorithmConfig(    name: str,    arguments: Optional[CSVReportGeneratorOphthalmologyAlgorithmArgumentsConfig] = CSVReportGeneratorOphthalmologyAlgorithmArgumentsConfig(save_path=None, trial_name=None, original_cols=None, aux_cols=[], rename_columns=None, filter=None, match_patient_visit=None, matched_csv_path=None, produce_matched_only=True, csv_extensions=None, produce_trial_notes_csv=False, sorting_columns=None),):Configuration for CSVReportGeneratorOphthalmologyAlgorithm.
Ancestors
Variables
- static 
arguments : Optional[CSVReportGeneratorOphthalmologyAlgorithmArgumentsConfig] 
- static 
name : str 
EHRPatientInfoDownloadAlgorithmConfig
class EHRPatientInfoDownloadAlgorithmConfig(    name: str,    arguments: Optional[EHRPatientInfoDownloadArgumentsConfig] = EHRPatientInfoDownloadArgumentsConfig(),):Configuration for EHRPatientInfoDownloadAlgorithm.
Ancestors
EHRPatientInfoDownloadArgumentsConfig
class EHRPatientInfoDownloadArgumentsConfig():Configuration for EHRPatientInfoDownloadAlgorithm arguments.
EHRPatientQueryAlgorithmConfig
class EHRPatientQueryAlgorithmConfig(    name: str,    arguments: EHRPatientQueryArgumentsConfig = EHRPatientQueryArgumentsConfig(),):Configuration for EHRPatientQuery algorithm.
Ancestors
EHRPatientQueryArgumentsConfig
class EHRPatientQueryArgumentsConfig():Configuration for EHRPatientQuery algorithm arguments.
ETDRSAlgorithmArgumentsConfig
class ETDRSAlgorithmArgumentsConfig(    laterality: str,    slo_photo_location_prefixes: Optional[SLOSegmentationLocationPrefix] = None,    slo_image_metadata_columns: Optional[SLOImageMetadataColumns] = None,    oct_image_metadata_columns: Optional[OCTImageMetadataColumns] = None,    threshold: float = 0.7,    calculate_on_oct: bool = False,    slo_mm_width: float = 8.8,    slo_mm_height: float = 8.8,):Configuration for ETDRSAlgorithm arguments.
Variables
- static 
calculate_on_oct : bool 
- static 
laterality : str 
- static 
oct_image_metadata_columns : Optional[OCTImageMetadataColumns] 
- static 
slo_image_metadata_columns : Optional[SLOImageMetadataColumns] 
- static 
slo_mm_height : float 
- static 
slo_mm_width : float 
- static 
slo_photo_location_prefixes : Optional[SLOSegmentationLocationPrefix] 
- static 
threshold : float 
ETDRSAlgorithmConfig
class ETDRSAlgorithmConfig(name: str, arguments: Optional[ETDRSAlgorithmArgumentsConfig]):Configuration for ETDRSAlgorithm.
Ancestors
FederatedModelTrainingAlgorithmConfig
class FederatedModelTrainingAlgorithmConfig(    name: str,    arguments: Optional[FederatedModelTrainingArgumentsConfig] = FederatedModelTrainingArgumentsConfig(modeller_checkpointing=True, checkpoint_filename=None),    model: Optional[ModelConfig] = None,    pretrained_file: Optional[Path] = None,):Configuration for the FederatedModelTraining algorithm.
Ancestors
FederatedModelTrainingArgumentsConfig
class FederatedModelTrainingArgumentsConfig(    modeller_checkpointing: bool = True, checkpoint_filename: Optional[str] = None,):Configuration for the FederatedModelTraining algorithm arguments.
FluidVolumeCalculationAlgorithmArgumentsConfig
class FluidVolumeCalculationAlgorithmArgumentsConfig(    fluid_volume_include_segmentations: Optional[list[str]] = None,):Configuration for FluidVolumeCalculationAlgorithm arguments.
Variables
- static 
fluid_volume_include_segmentations : Optional[list[str]] 
FluidVolumeCalculationAlgorithmConfig
class FluidVolumeCalculationAlgorithmConfig(    name: str,    arguments: Optional[FluidVolumeCalculationAlgorithmArgumentsConfig] = FluidVolumeCalculationAlgorithmArgumentsConfig(fluid_volume_include_segmentations=None),):Configuration for FluidVolumeCalculationAlgorithm.
Ancestors
Variables
- static 
arguments : Optional[FluidVolumeCalculationAlgorithmArgumentsConfig] 
- static 
name : str 
FoveaCoordinatesAlgorithmArgumentsConfig
class FoveaCoordinatesAlgorithmArgumentsConfig(    bscan_width_col: str = 'size_width',    location_prefixes: Optional[SLOSegmentationLocationPrefix] = None,):Configuration for FoveaCoordinatesAlgorithm arguments.
Variables
- static 
bscan_width_col : str 
- static 
location_prefixes : Optional[SLOSegmentationLocationPrefix] 
FoveaCoordinatesAlgorithmConfig
class FoveaCoordinatesAlgorithmConfig(    name: str,    arguments: Optional[FoveaCoordinatesAlgorithmArgumentsConfig] = FoveaCoordinatesAlgorithmArgumentsConfig(bscan_width_col='size_width', location_prefixes=None),):Configuration for FoveaCoordinatesAlgorithm.
Ancestors
GATrialCalculationAlgorithmAmethystArgumentsConfig
class GATrialCalculationAlgorithmAmethystArgumentsConfig(    ga_area_include_segmentations: Optional[list[str]] = None,    ga_area_exclude_segmentations: Optional[list[str]] = None,):Configuration for GATrialCalculationAlgorithmAmethyst arguments.
Ancestors
- bitfount.runners.config_schemas.algorithm_schemas._GATrialCalculationAlgorithmBaseArgumentsConfig
 
GATrialCalculationAlgorithmAmethystConfig
class GATrialCalculationAlgorithmAmethystConfig(    name: str,    arguments: Optional[GATrialCalculationAlgorithmAmethystArgumentsConfig] = GATrialCalculationAlgorithmAmethystArgumentsConfig(ga_area_include_segmentations=None, ga_area_exclude_segmentations=None),):Configuration for GATrialCalculationAlgorithmAmethyst.
Ancestors
Variables
- static 
arguments : Optional[GATrialCalculationAlgorithmAmethystArgumentsConfig] 
- static 
name : str 
GATrialCalculationAlgorithmBronzeArgumentsConfig
class GATrialCalculationAlgorithmBronzeArgumentsConfig(    ga_area_include_segmentations: Optional[list[str]] = None,    ga_area_exclude_segmentations: Optional[list[str]] = None,    fovea_landmark_idx: Optional[int] = 1,):Configuration for GATrialCalculationAlgorithmBronze arguments.
Ancestors
- bitfount.runners.config_schemas.algorithm_schemas._GATrialCalculationWithFoveaAlgorithmBaseArgumentsConfig
 
GATrialCalculationAlgorithmBronzeConfig
class GATrialCalculationAlgorithmBronzeConfig(    name: str,    arguments: Optional[GATrialCalculationAlgorithmBronzeArgumentsConfig] = GATrialCalculationAlgorithmBronzeArgumentsConfig(ga_area_include_segmentations=None, ga_area_exclude_segmentations=None, fovea_landmark_idx=1),):Configuration for GATrialCalculationAlgorithmBronze.
Ancestors
Variables
- static 
arguments : Optional[GATrialCalculationAlgorithmBronzeArgumentsConfig] 
- static 
name : str 
GATrialCalculationAlgorithmCharcoalArgumentsConfig
class GATrialCalculationAlgorithmCharcoalArgumentsConfig(    ga_area_include_segmentations: Optional[list[str]] = None,    ga_area_exclude_segmentations: Optional[list[str]] = None,    fovea_landmark_idx: Optional[int] = 1,):Configuration for GATrialCalculationAlgorithmCharcoal arguments.
Ancestors
- bitfount.runners.config_schemas.algorithm_schemas._GATrialCalculationWithFoveaAlgorithmBaseArgumentsConfig
 
GATrialCalculationAlgorithmCharcoalConfig
class GATrialCalculationAlgorithmCharcoalConfig(    name: str,    arguments: Optional[GATrialCalculationAlgorithmCharcoalArgumentsConfig] = GATrialCalculationAlgorithmCharcoalArgumentsConfig(ga_area_include_segmentations=None, ga_area_exclude_segmentations=None, fovea_landmark_idx=1),):Configuration for GATrialCalculationAlgorithmCharcoal.
Ancestors
Variables
- static 
arguments : Optional[GATrialCalculationAlgorithmCharcoalArgumentsConfig] 
- static 
name : str 
GATrialCalculationAlgorithmJadeArgumentsConfig
class GATrialCalculationAlgorithmJadeArgumentsConfig(    ga_area_include_segmentations: Optional[list[str]] = None,    ga_area_exclude_segmentations: Optional[list[str]] = None,):Configuration for GATrialCalculationAlgorithmJade arguments.
Ancestors
- bitfount.runners.config_schemas.algorithm_schemas._GATrialCalculationAlgorithmBaseArgumentsConfig
 
GATrialCalculationAlgorithmJadeConfig
class GATrialCalculationAlgorithmJadeConfig(    name: str,    arguments: Optional[GATrialCalculationAlgorithmJadeArgumentsConfig] = GATrialCalculationAlgorithmJadeArgumentsConfig(ga_area_include_segmentations=None, ga_area_exclude_segmentations=None),):Configuration for GATrialCalculationAlgorithmJade.
Ancestors
Variables
- static 
arguments : Optional[GATrialCalculationAlgorithmJadeArgumentsConfig] 
- static 
name : str 
GATrialPDFGeneratorAlgorithmAmethystArgumentsConfig
class GATrialPDFGeneratorAlgorithmAmethystArgumentsConfig(    report_metadata: Optional[ReportMetadata] = None,    filename_prefix: Optional[str] = None,    save_path: Optional[Path] = None,    filter: Optional[list[ColumnFilter]] = None,    pdf_filename_columns: Optional[list[str]] = None,    trial_name: Optional[str] = None,):Configuration for GATrialPDFGeneratorAlgorithmAmethyst arguments.
Variables
- static 
filename_prefix : Optional[str] 
- static 
filter : Optional[list[ColumnFilter]] 
- static 
pdf_filename_columns : Optional[list[str]] 
- static 
report_metadata : Optional[ReportMetadata] 
- static 
save_path : Optional[pathlib.Path] 
- static 
trial_name : Optional[str] 
GATrialPDFGeneratorAlgorithmAmethystConfig
class GATrialPDFGeneratorAlgorithmAmethystConfig(    name: str,    arguments: Optional[GATrialPDFGeneratorAlgorithmAmethystArgumentsConfig] = GATrialPDFGeneratorAlgorithmAmethystArgumentsConfig(report_metadata=None, filename_prefix=None, save_path=None, filter=None, pdf_filename_columns=None, trial_name=None),):Configuration for GATrialPDFGeneratorAlgorithmAmethyst.
Ancestors
Variables
- static 
arguments : Optional[GATrialPDFGeneratorAlgorithmAmethystArgumentsConfig] 
- static 
name : str 
GATrialPDFGeneratorAlgorithmJadeArgumentsConfig
class GATrialPDFGeneratorAlgorithmJadeArgumentsConfig(    report_metadata: Optional[ReportMetadata] = None,    filename_prefix: Optional[str] = None,    save_path: Optional[Path] = None,    filter: Optional[list[ColumnFilter]] = None,    pdf_filename_columns: Optional[list[str]] = None,    trial_name: Optional[str] = None,):Configuration for GATrialPDFGeneratorAlgorithmJade arguments.
Variables
- static 
filename_prefix : Optional[str] 
- static 
filter : Optional[list[ColumnFilter]] 
- static 
pdf_filename_columns : Optional[list[str]] 
- static 
report_metadata : Optional[ReportMetadata] 
- static 
save_path : Optional[pathlib.Path] 
- static 
trial_name : Optional[str] 
GATrialPDFGeneratorAlgorithmJadeConfig
class GATrialPDFGeneratorAlgorithmJadeConfig(    name: str,    arguments: Optional[GATrialPDFGeneratorAlgorithmJadeArgumentsConfig] = GATrialPDFGeneratorAlgorithmJadeArgumentsConfig(report_metadata=None, filename_prefix=None, save_path=None, filter=None, pdf_filename_columns=None, trial_name=None),):Configuration for GATrialPDFGeneratorAlgorithmJade.
Ancestors
Variables
- static 
arguments : Optional[GATrialPDFGeneratorAlgorithmJadeArgumentsConfig] 
- static 
name : str 
GenericAlgorithmConfig
class GenericAlgorithmConfig(name: str, arguments: _JSONDict = {}):Configuration for unspecified algorithm plugins.
Raises
ValueError: if the algorithm name starts withbitfount.
Ancestors
HuggingFaceImageClassificationInferenceAlgorithmConfig
class HuggingFaceImageClassificationInferenceAlgorithmConfig(    name: str,    arguments: Optional[HuggingFaceImageClassificationInferenceArgumentsConfig],):Configuration for HuggingFaceImageClassificationInference.
Ancestors
Variables
- static 
arguments : Optional[HuggingFaceImageClassificationInferenceArgumentsConfig] 
- static 
name : str 
HuggingFaceImageClassificationInferenceArgumentsConfig
class HuggingFaceImageClassificationInferenceArgumentsConfig(    model_id: str,    apply_softmax_to_predictions: bool = True,    batch_size: int = 1,    seed: int = 42,    top_k: int = 5,):Configuration for HuggingFaceImageClassificationInference arguments.
Variables
- static 
apply_softmax_to_predictions : bool 
- static 
batch_size : int 
- static 
model_id : str 
- static 
seed : int 
- static 
top_k : int 
HuggingFaceImageSegmentationInferenceAlgorithmConfig
class HuggingFaceImageSegmentationInferenceAlgorithmConfig(    name: str, arguments: Optional[HuggingFaceImageSegmentationInferenceArgumentsConfig],):Configuration for HuggingFaceImageSegmentationInference.
Ancestors
Variables
- static 
arguments : Optional[HuggingFaceImageSegmentationInferenceArgumentsConfig] 
- static 
name : str 
HuggingFaceImageSegmentationInferenceArgumentsConfig
class HuggingFaceImageSegmentationInferenceArgumentsConfig(    model_id: str,    alpha: float = 0.3,    batch_size: int = 1,    dataframe_output: bool = False,    mask_threshold: float = 0.5,    overlap_mask_area_threshold: float = 0.5,    seed: int = 42,    save_path: Optional[str] = None,    subtask: Optional[str] = None,    threshold: float = 0.9,):Configuration for HuggingFaceImageSegmentationInference arguments.
Variables
- static 
alpha : float 
- static 
batch_size : int 
- static 
dataframe_output : bool 
- static 
mask_threshold : float 
- static 
model_id : str 
- static 
overlap_mask_area_threshold : float 
- static 
save_path : Optional[str] 
- static 
seed : int 
- static 
subtask : Optional[str] 
- static 
threshold : float 
HuggingFacePerplexityEvaluationAlgorithmConfig
class HuggingFacePerplexityEvaluationAlgorithmConfig(    name: str, arguments: Optional[HuggingFacePerplexityEvaluationArgumentsConfig],):Configuration for the HuggingFacePerplexityEvaluation algorithm.
Ancestors
Variables
- static 
arguments : Optional[HuggingFacePerplexityEvaluationArgumentsConfig] 
- static 
name : str 
HuggingFacePerplexityEvaluationArgumentsConfig
class HuggingFacePerplexityEvaluationArgumentsConfig(    model_id: str, stride: int = 512, seed: int = 42,):Configuration for the HuggingFacePerplexityEvaluation algorithm arguments.
HuggingFaceTextClassificationInferenceAlgorithmConfig
class HuggingFaceTextClassificationInferenceAlgorithmConfig(    name: str, arguments: Optional[HuggingFaceTextClassificationInferenceArgumentsConfig],):Configuration for HuggingFaceTextClassificationInference.
Ancestors
Variables
- static 
arguments : Optional[HuggingFaceTextClassificationInferenceArgumentsConfig] 
- static 
name : str 
HuggingFaceTextClassificationInferenceArgumentsConfig
class HuggingFaceTextClassificationInferenceArgumentsConfig(    model_id: str,    batch_size: int = 1,    function_to_apply: Optional[str] = None,    seed: int = 42,    top_k: int = 5,):Configuration for HuggingFaceTextClassificationInference arguments.
Variables
- static 
batch_size : int 
- static 
function_to_apply : Optional[str] 
- static 
model_id : str 
- static 
seed : int 
- static 
top_k : int 
HuggingFaceTextGenerationInferenceAlgorithmConfig
class HuggingFaceTextGenerationInferenceAlgorithmConfig(    name: str, arguments: Optional[HuggingFaceTextGenerationInferenceArgumentsConfig],):Configuration for the HuggingFaceTextGenerationInference algorithm.
Ancestors
Variables
- static 
arguments : Optional[HuggingFaceTextGenerationInferenceArgumentsConfig] 
- static 
name : str 
HuggingFaceTextGenerationInferenceArgumentsConfig
class HuggingFaceTextGenerationInferenceArgumentsConfig(    model_id: str,    prompt_format: Optional[str] = None,    max_length: int = 50,    num_return_sequences: int = 1,    seed: int = 42,    min_new_tokens: int = 1,    repetition_penalty: float = 1.0,    num_beams: int = 1,    early_stopping: bool = True,    pad_token_id: Optional[int] = None,    eos_token_id: Optional[int] = None,    device: Optional[str] = None,    torch_dtype: str = 'float32',):Configuration for the HuggingFaceTextGenerationInference algorithm arguments.
Variables
- static 
device : Optional[str] 
- static 
early_stopping : bool 
- static 
eos_token_id : Optional[int] 
- static 
max_length : int 
- static 
min_new_tokens : int 
- static 
model_id : str 
- static 
num_beams : int 
- static 
num_return_sequences : int 
- static 
pad_token_id : Optional[int] 
- static 
prompt_format : Optional[str] 
- static 
repetition_penalty : float 
- static 
seed : int 
- static 
torch_dtype : str 
ImageSelectionAlgorithmArgumentsConfig
class ImageSelectionAlgorithmArgumentsConfig():Configuration for ImageSelectionAlgorithm arguments.
ImageSelectionAlgorithmConfig
class ImageSelectionAlgorithmConfig(    name: str, arguments: ImageSelectionAlgorithmArgumentsConfig,):Configuration for ImageSelectionAlgorithm algorithm.
Ancestors
ModelAlgorithmConfig
class ModelAlgorithmConfig(    name: str,    arguments: Optional[Any] = None,    model: Optional[ModelConfig] = None,    pretrained_file: Optional[Path] = None,):Configuration for the Model algorithms.
Ancestors
Subclasses
ModelEvaluationAlgorithmConfig
class ModelEvaluationAlgorithmConfig(    name: str,    arguments: Optional[ModelEvaluationArgumentsConfig],    model: Optional[ModelConfig] = None,    pretrained_file: Optional[Path] = None,):Configuration for the ModelEvaluation algorithm.
Ancestors
ModelEvaluationArgumentsConfig
class ModelEvaluationArgumentsConfig():Configuration for the ModelEvaluation algorithm arguments.
ModelInferenceAlgorithmConfig
class ModelInferenceAlgorithmConfig(    name: str,    arguments: ModelInferenceArgumentsConfig = ModelInferenceArgumentsConfig(class_outputs=None, postprocessors=None),    model: Optional[ModelConfig] = None,    pretrained_file: Optional[Path] = None,):Configuration for the ModelInference algorithm.
Ancestors
ModelInferenceArgumentsConfig
class ModelInferenceArgumentsConfig(    class_outputs: Optional[list[str]] = None,    postprocessors: Optional[list[dict[str, str]]] = None,):Configuration for the ModelInference algorithm arguments.
Variables
- static 
class_outputs : Optional[list[str]] 
- static 
postprocessors : Optional[list[dict[str, str]]] 
ModelTrainingAndEvaluationAlgorithmConfig
class ModelTrainingAndEvaluationAlgorithmConfig(    name: str,    arguments: Optional[ModelTrainingAndEvaluationArgumentsConfig],    model: Optional[ModelConfig] = None,    pretrained_file: Optional[Path] = None,):Configuration for the ModelTrainingAndEvaluation algorithm.
Ancestors
ModelTrainingAndEvaluationArgumentsConfig
class ModelTrainingAndEvaluationArgumentsConfig():Configuration for the ModelTrainingAndEvaluation algorithm arguments.
PrivateSqlQueryAlgorithmConfig
class PrivateSqlQueryAlgorithmConfig(    name: str, arguments: PrivateSqlQueryArgumentsConfig,):Configuration for the PrivateSqlQuery algorithm.
Ancestors
PrivateSqlQueryArgumentsConfig
class PrivateSqlQueryArgumentsConfig(    query: str,    epsilon: float,    delta: float,    column_ranges: Union[dict[str, PrivateSqlQueryColumnArgumentsConfig], dict[str, dict[str, PrivateSqlQueryColumnArgumentsConfig]]],    table: Optional[str] = None,    db_schema: Optional[str] = None,):Configuration for the PrivateSqlQuery algorithm arguments.
Variables
- static 
column_ranges : Union[dict[str, PrivateSqlQueryColumnArgumentsConfig], dict[str, dict[str, PrivateSqlQueryColumnArgumentsConfig]]] 
- static 
db_schema : Optional[str] 
- static 
delta : float 
- static 
epsilon : float 
- static 
query : str 
- static 
table : Optional[str] 
PrivateSqlQueryColumnArgumentsConfig
class PrivateSqlQueryColumnArgumentsConfig(    lower: Optional[int] = None, upper: Optional[int] = None,):Configuration for the PrivateSqlQuery algorithm column arguments.
RecordFilterAlgorithmArgumentsConfig
class RecordFilterAlgorithmArgumentsConfig(    strategies: Sequence[Union[FilterStrategy, str]],    filter_args_list: list[dict[str, Any]],):Configuration for RecordFilter algorithm arguments.
Variables
- static 
filter_args_list : list[dict[str, typing.Any]] 
- static 
strategies : Sequence[Union[FilterStrategy, str]] 
RecordFilterAlgorithmConfig
class RecordFilterAlgorithmConfig(    name: str, arguments: Optional[RecordFilterAlgorithmArgumentsConfig],):Configuration for RecordFilter algorithm.
Ancestors
ReduceCSVAlgorithmCharcoalArgumentsConfig
class ReduceCSVAlgorithmCharcoalArgumentsConfig(    save_path: Optional[Path] = None,    eligible_only: bool = True,    delete_intermediate: bool = True,):Configuration for ReduceCSVAlgorithmCharcoal arguments.
Variables
- static 
delete_intermediate : bool 
- static 
eligible_only : bool 
- static 
save_path : Optional[pathlib.Path] 
ReduceCSVAlgorithmCharcoalConfig
class ReduceCSVAlgorithmCharcoalConfig(    name: str,    arguments: Optional[ReduceCSVAlgorithmCharcoalArgumentsConfig] = ReduceCSVAlgorithmCharcoalArgumentsConfig(save_path=None, eligible_only=True, delete_intermediate=True),):Configuration for ReduceCSVAlgorithmCharcoal.
Ancestors
S3UploadAlgorithmArgumentsConfig
class S3UploadAlgorithmArgumentsConfig(    s3_bucket: str, aws_region: Optional[str], aws_profile: str = 'default',):Configuration for S3UploadAlgorithm arguments.
S3UploadAlgorithmConfig
class S3UploadAlgorithmConfig(    name: str, arguments: Optional[S3UploadAlgorithmArgumentsConfig],):Configuration for S3UploadAlgorithm.
Ancestors
SqlQueryAlgorithmConfig
class SqlQueryAlgorithmConfig(name: str, arguments: SqlQueryArgumentsConfig):Configuration for the SqlQuery algorithm.
Ancestors
SqlQueryArgumentsConfig
class SqlQueryArgumentsConfig(query: str, table: Optional[str] = None):Configuration for the SqlQuery algorithm arguments.
TIMMFineTuningAlgorithmConfig
class TIMMFineTuningAlgorithmConfig(    name: str, arguments: Optional[TIMMFineTuningArgumentsConfig],):Configuration for TIMMFineTuning algorithm.
Ancestors
TIMMFineTuningArgumentsConfig
class TIMMFineTuningArgumentsConfig(    model_id: str,    args: Optional[TemplatedTimmTrainingConfig] = None,    batch_transformations: Optional[dict[str, list[Union[str, _JSONDict]]]] = None,    labels: Optional[list[str]] = None,    return_weights: bool = False,    save_path: Optional[Path] = None,):Configuration for TIMMFineTuning algorithm arguments.
Variables
- static 
args : Optional[TemplatedTimmTrainingConfig] 
- static 
batch_transformations : Optional[dict[str, list[typing.Union[str, dict[str, typing.Any]]]]] 
- static 
labels : Optional[list[str]] 
- static 
model_id : str 
- static 
return_weights : bool 
- static 
save_path : Optional[pathlib.Path] 
TIMMInferenceAlgorithmConfig
class TIMMInferenceAlgorithmConfig(    name: str, arguments: Optional[TIMMInferenceArgumentsConfig],):Configuration for TIMMInference algorithm.
Ancestors
TIMMInferenceArgumentsConfig
class TIMMInferenceArgumentsConfig(    model_id: str,    num_classes: Optional[int] = None,    checkpoint_path: Optional[Path] = None,    class_outputs: Optional[list[str]] = None,    batch_transformations: Optional[list[Union[str, _JSONDict]]] = None,):Configuration for TIMMInference algorithm arguments.
Variables
- static 
batch_transformations : Optional[list[typing.Union[str, dict[str, typing.Any]]]] 
- static 
checkpoint_path : Optional[pathlib.Path] 
- static 
class_outputs : Optional[list[str]] 
- static 
model_id : str 
- static 
num_classes : Optional[int] 
TemplatedTimmTrainingConfig
class TemplatedTimmTrainingConfig(    pretrained: bool = True,    initial_checkpoint: str = '',    num_classes: Optional[int] = None,    gp: Optional[str] = None,    img_size: Optional[int] = None,    in_chans: Optional[int] = None,    input_size: Optional[tuple[int, int, int]] = None,    crop_pct: Optional[float] = None,    mean: Optional[list[float]] = None,    std: Optional[list[float]] = None,    interpolation: str = '',    batch_size: int = 16,    validation_batch_size: Optional[int] = None,    channels_last: bool = False,    fuser: str = '',    grad_accum_steps: int = 1,    grad_checkpointing: bool = False,    fast_norm: bool = False,    model_kwargs: dict[str, Any] = {},    head_init_scale: Optional[float] = None,    head_init_bias: Optional[float] = None,    torchscript: bool = False,    torchcompile: Optional[str] = None,    opt: str = 'sgd',    opt_eps: Optional[float] = None,    opt_betas: Optional[list[float]] = None,    momentum: float = 0.9,    weight_decay: float = 0.05,    clip_grad: Optional[float] = None,    clip_mode: str = 'norm',    layer_decay: Optional[float] = 0.65,    opt_kwargs: dict[str, Any] = {},    sched: str = 'constant_with_warmup',    sched_on_updates: bool = False,    lr: Optional[float] = 1e-05,    lr_base: float = 0.005,    lr_base_size: int = 256,    lr_base_scale: str = '',    lr_noise: Optional[list[float]] = None,    lr_noise_pct: float = 0.67,    lr_noise_std: float = 1.0,    lr_cycle_mul: float = 1.0,    lr_cycle_decay: float = 0.5,    lr_cycle_limit: int = 1,    lr_k_decay: float = 1.0,    warmup_lr: float = 1e-05,    min_lr: float = 0,    epochs: int = 300,    epoch_repeats: float = 0.0,    start_epoch: Optional[int] = None,    decay_milestones: list[int] = [90, 180, 270],    decay_epochs: float = 90,    warmup_epochs: int = 5,    warmup_prefix: bool = False,    cooldown_epochs: int = 0,    patience_epochs: int = 10,    decay_rate: float = 1.0,    aug_splits: int = 0,    jsd_loss: bool = False,    bce_loss: bool = False,    bce_target_thresh: Optional[float] = None,    resplit: bool = False,    mixup: float = 0.0,    cutmix: float = 0.0,    cutmix_minmax: Optional[list[float]] = None,    mixup_prob: float = 1.0,    mixup_switch_prob: float = 0.5,    mixup_mode: str = 'batch',    mixup_off_epoch: int = 0,    smoothing: float = 0.1,    drop: float = 0.0,    drop_connect: Optional[float] = None,    drop_path: Optional[float] = 0.2,    drop_block: Optional[float] = None,    bn_momentum: Optional[float] = None,    bn_eps: Optional[float] = None,    sync_bn: bool = False,    dist_bn: str = 'reduce',    split_bn: bool = False,    model_ema: bool = False,    model_ema_force_cpu: bool = False,    model_ema_decay: float = 0.9998,    seed: int = 42,    log_interval: int = 50,    recovery_interval: int = 0,    checkpoint_hist: int = 10,    workers: int = 4,    save_images: bool = False,    amp: bool = False,    amp_dtype: str = 'float16',    amp_impl: str = 'native',    no_ddp_bb: bool = False,    synchronize_step: bool = False,    no_prefetcher: bool = False,    eval_metric: str = 'top1',    tta: int = 0,    local_rank: int = 0,):Configuration for TIMMFineTuning algorithm arguments.
Ancestors
- TIMMTrainingConfig
 - bitfount.types.UsedForConfigSchemas
 
TrialInclusionCriteriaMatchAlgorithmAmethystArgumentsConfig
class TrialInclusionCriteriaMatchAlgorithmAmethystArgumentsConfig(    cnv_threshold: float = 0.5,    largest_ga_lesion_lower_bound: float = 1.26,    largest_ga_lesion_upper_bound: Optional[float] = None,    total_ga_area_lower_bound: float = 2.5,    total_ga_area_upper_bound: float = 17.5,    patient_age_lower_bound: Optional[int] = None,    patient_age_upper_bound: Optional[int] = None,):Configuration for TrialInclusionCriteriaMatchAlgorithmAmethyst arguments.
Ancestors
- bitfount.runners.config_schemas.algorithm_schemas._TrialInclusionCriteriaMatchAlgorithmBaseArgumentsConfig
 
TrialInclusionCriteriaMatchAlgorithmAmethystConfig
class TrialInclusionCriteriaMatchAlgorithmAmethystConfig(    name: str,    arguments: Optional[TrialInclusionCriteriaMatchAlgorithmAmethystArgumentsConfig] = TrialInclusionCriteriaMatchAlgorithmAmethystArgumentsConfig(cnv_threshold=0.5, largest_ga_lesion_lower_bound=1.26, largest_ga_lesion_upper_bound=None, total_ga_area_lower_bound=2.5, total_ga_area_upper_bound=17.5, patient_age_lower_bound=None, patient_age_upper_bound=None),):Configuration for TrialInclusionCriteriaMatchAlgorithmAmethyst.
Ancestors
Variables
- static 
arguments : Optional[TrialInclusionCriteriaMatchAlgorithmAmethystArgumentsConfig] 
- static 
name : str 
TrialInclusionCriteriaMatchAlgorithmBronzeArgumentsConfig
class TrialInclusionCriteriaMatchAlgorithmBronzeArgumentsConfig(    cnv_threshold: float = 0.5,    largest_ga_lesion_lower_bound: float = 1.26,    largest_ga_lesion_upper_bound: Optional[float] = None,    total_ga_area_lower_bound: float = 2.5,    total_ga_area_upper_bound: float = 17.5,    patient_age_lower_bound: Optional[int] = None,    patient_age_upper_bound: Optional[int] = None,    distance_from_fovea_lower_bound: float = 0.0,    distance_from_fovea_upper_bound: float = inf,    exclude_foveal_ga: bool = False,    conditions_inclusion_codes: Optional[list[str]] = None,    conditions_exclusion_codes: Optional[list[str]] = None,    procedures_exclusion_codes: Optional[list[str]] = None,):Configuration for TrialInclusionCriteriaMatchAlgorithmBronze arguments.
Ancestors
- bitfount.runners.config_schemas.algorithm_schemas._TrialInclusionCriteriaMatchAlgorithmBaseArgumentsConfig
 
Variables
- static 
conditions_exclusion_codes : Optional[list[str]] 
- static 
conditions_inclusion_codes : Optional[list[str]] 
- static 
distance_from_fovea_lower_bound : float 
- static 
distance_from_fovea_upper_bound : float 
- static 
exclude_foveal_ga : bool 
- static 
procedures_exclusion_codes : Optional[list[str]] 
TrialInclusionCriteriaMatchAlgorithmBronzeConfig
class TrialInclusionCriteriaMatchAlgorithmBronzeConfig(    name: str,    arguments: Optional[TrialInclusionCriteriaMatchAlgorithmBronzeArgumentsConfig] = TrialInclusionCriteriaMatchAlgorithmBronzeArgumentsConfig(cnv_threshold=0.5, largest_ga_lesion_lower_bound=1.26, largest_ga_lesion_upper_bound=None, total_ga_area_lower_bound=2.5, total_ga_area_upper_bound=17.5, patient_age_lower_bound=None, patient_age_upper_bound=None, distance_from_fovea_lower_bound=0.0, distance_from_fovea_upper_bound=inf, exclude_foveal_ga=False, conditions_inclusion_codes=None, conditions_exclusion_codes=None, procedures_exclusion_codes=None),):Configuration for TrialInclusionCriteriaMatchAlgorithmBronze.
Ancestors
Variables
- static 
arguments : Optional[TrialInclusionCriteriaMatchAlgorithmBronzeArgumentsConfig] 
- static 
name : str 
TrialInclusionCriteriaMatchAlgorithmCharcoalArgumentsConfig
class TrialInclusionCriteriaMatchAlgorithmCharcoalArgumentsConfig(    cnv_threshold: float = 0.5,    largest_ga_lesion_lower_bound: float = 1.26,    largest_ga_lesion_upper_bound: Optional[float] = None,    total_ga_area_lower_bound: float = 2.5,    total_ga_area_upper_bound: float = 17.5,    patient_age_lower_bound: Optional[int] = None,    patient_age_upper_bound: Optional[int] = None,    conditions_inclusion_codes: Optional[list[str]] = None,    conditions_exclusion_codes: Optional[list[str]] = None,    procedures_exclusion_codes: Optional[list[str]] = None,):Configuration for TrialInclusionCriteriaMatchAlgorithmCharcoal arguments.
Ancestors
- bitfount.runners.config_schemas.algorithm_schemas._TrialInclusionCriteriaMatchAlgorithmBaseArgumentsConfig
 
Variables
- static 
conditions_exclusion_codes : Optional[list[str]] 
- static 
conditions_inclusion_codes : Optional[list[str]] 
- static 
procedures_exclusion_codes : Optional[list[str]] 
TrialInclusionCriteriaMatchAlgorithmCharcoalConfig
class TrialInclusionCriteriaMatchAlgorithmCharcoalConfig(    name: str,    arguments: Optional[TrialInclusionCriteriaMatchAlgorithmCharcoalArgumentsConfig] = TrialInclusionCriteriaMatchAlgorithmCharcoalArgumentsConfig(cnv_threshold=0.5, largest_ga_lesion_lower_bound=1.26, largest_ga_lesion_upper_bound=None, total_ga_area_lower_bound=2.5, total_ga_area_upper_bound=17.5, patient_age_lower_bound=None, patient_age_upper_bound=None, conditions_inclusion_codes=None, conditions_exclusion_codes=None, procedures_exclusion_codes=None),):Configuration for TrialInclusionCriteriaMatchAlgorithmCharcoal.
Ancestors
Variables
- static 
arguments : Optional[TrialInclusionCriteriaMatchAlgorithmCharcoalArgumentsConfig] 
- static 
name : str 
TrialInclusionCriteriaMatchAlgorithmJadeArgumentsConfig
class TrialInclusionCriteriaMatchAlgorithmJadeArgumentsConfig():Configuration for TrialInclusionCriteriaMatchAlgorithmJade arguments.
TrialInclusionCriteriaMatchAlgorithmJadeConfig
class TrialInclusionCriteriaMatchAlgorithmJadeConfig(    name: str,    arguments: Optional[TrialInclusionCriteriaMatchAlgorithmJadeArgumentsConfig] = TrialInclusionCriteriaMatchAlgorithmJadeArgumentsConfig(),):Configuration for TrialInclusionCriteriaMatchAlgorithmJade.
Ancestors
Variables
- static 
arguments : Optional[TrialInclusionCriteriaMatchAlgorithmJadeArgumentsConfig] 
- static 
name : str